Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for glycosphingolipid transfer specificity

Abstract

Lipid transfer proteins are important in membrane vesicle biogenesis and trafficking, signal transduction and immunological presentation processes1,2,3. The conserved and ubiquitous mammalian glycolipid transfer proteins (GLTPs) serve as potential regulators of cell processes mediated by glycosphingolipids, ranging from differentiation and proliferation to invasive adhesion, neurodegeneration and apoptosis4,5. Here we report crystal structures of apo-GLTP (1.65 Å resolution) and lactosylceramide-bound (1.95 Å) GLTP, in which the bound glycosphingolipid is sandwiched, after adaptive recognition, within a previously unknown two-layer all-α-helical topology. Glycosphingolipid binding specificity is achieved through recognition and anchoring of the sugar-amide headgroup to the GLTP recognition centre by hydrogen bond networks and hydrophobic contacts, and encapsulation of both lipid chains, in a precisely oriented manner within a ‘moulded-to-fit’ hydrophobic tunnel. A cleft-like conformational gating mechanism, involving two interhelical loops and one α-helix of GLTP, could enable the glycolipid chains to enter and leave the tunnel in the membrane-associated state. Mutation and functional analyses of residues in the glycolipid recognition centre and within the hydrophobic tunnel support a framework for understanding how GLTPs acquire and release glycosphingolipids during lipid intermembrane transfer and presentation processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structures of apo-GLTP and the lactosylceramide–GLTP complex.
Figure 2: Intermolecular interactions in the lactosylceramide–GLTP complex.
Figure 3: Comparison of apo-GLTP and lactosylceramide-bound GLTP.

Similar content being viewed by others

References

  1. Rogers, D. P. & Bankaitis, V. A. Phospholipid transfer proteins and physiological functions. Int. Rev. Cytol. 197, 35–81 (2000)

    Article  CAS  Google Scholar 

  2. Wirtz, K. W. A. Phospholipid transfer proteins revisited. Biochem. J. 324, 353–360 (1997)

    Article  CAS  Google Scholar 

  3. Zhou, D. et al. Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303, 523–527 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Hakomori, S. The glycosynapse. Proc. Natl Acad. Sci. USA 99, 225–232 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Dwek, R. A., Butters, T. D., Platt, F. M. & Zitzmann, N. Targeting glycosylation as a therapeutic approach. Nature Rev. Drug Discov. 1, 65–75 (2002)

    Article  CAS  Google Scholar 

  6. Metz, R. J. & Radin, N. S. Purification and properties of a cerebroside transfer protein. J. Biol. Chem. 257, 12901–12907 (1982)

    CAS  PubMed  Google Scholar 

  7. Abe, A. & Sasaki, T. Purification and some properties of the glycolipid transfer protein from pig brain. J. Biol. Chem. 260, 11231–11239 (1985)

    CAS  PubMed  Google Scholar 

  8. Brown, R. E., Jarvis, K. L. & Hyland, K. J. Purification and characterization of glycolipid transfer protein from bovine brain. Biochim. Biophys. Acta 1044, 77–83 (1990)

    Article  CAS  Google Scholar 

  9. Yamada, K., Abe, A. & Sasaki, T. Specificity of the glycolipid transfer protein from pig brain. J. Biol. Chem. 260, 4615–4621 (1985)

    CAS  PubMed  Google Scholar 

  10. Lin, X., Mattjus, P., Pike, H. M., Windebank, A. J. & Brown, R. E. Cloning and expression of glycolipid transfer protein from bovine and porcine brain. J. Biol. Chem. 275, 5104–5110 (2000)

    Article  CAS  Google Scholar 

  11. Brodersen, P. et al. Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev. 16, 490–502 (2002)

    Article  CAS  Google Scholar 

  12. Mattjus, P., Turcq, B., Pike, H. M., Molotkovsky, J. G. & Brown, R. E. Glycolipid intermembrane transfer is accelerated by HET-C2, a filamentous fungus gene product involved in the cell–cell incompatibility response. Biochemistry 42, 535–542 (2003)

    Article  CAS  Google Scholar 

  13. Tsujishita, Y. & Hurley, J. H. Structure and lipid transport mechanism of a StAR-related domain. Nature Struct. Biol. 7, 408–414 (2000)

    Article  CAS  Google Scholar 

  14. Roderick, S. L. et al. Structure of human phosphatidylcholine transfer protein in complex with its ligand. Nature Struct. Biol. 9, 507–511 (2002)

    CAS  PubMed  Google Scholar 

  15. Min, K. C., Kovall, R. A. & Hendrickson, W. A. Crystal structure of α-tocopherol transfer protein bound to it ligand: implications for ataxia with vitamin E deficiency. Proc. Natl Acad. Sci. USA 100, 14713–14718 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Gadola, S. D. et al. Structure of human CD1b with bound ligands at 2.3 Å, a maze of alkyl chains. Nature Immunol. 3, 721–726 (2002)

    Article  CAS  Google Scholar 

  17. Zajonc, D. M., Elsliger, M. A., Teyton, L. & Wilson, I. A. Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 Å. Nature Immunol. 4, 808–815 (2003)

    Article  CAS  Google Scholar 

  18. Mahfoud, R. et al. Identification of a common sphingolipid-binding domain in Alzheimer, prion, and HIV-1 proteins. J. Biol. Chem. 277, 11292–11296 (2002)

    Article  CAS  Google Scholar 

  19. Schubert Wright, C., Zhao, Q. & Rastinejad, F. Structural analysis of lipid complexes of GM2-activator protein. J. Mol. Biol. 331, 951–964 (2003)

    Article  Google Scholar 

  20. Weis, W. I. & Drickamer, K. Structural basis of lectin–carbohydrate interactions. Annu. Rev. Biochem. 65, 441–473 (1996)

    Article  CAS  Google Scholar 

  21. Feinberg, H., Mitchell, D. A., Drickamer, K. & Weis, W. I. Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 294, 2163–2166 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Wimley, W. W. & White, S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nature Struct. Biol. 3, 842–848 (1996)

    Article  CAS  Google Scholar 

  23. Killian, J. A. & von Heijne, G. How proteins adapt to a membrane–water interface. Trends Biochem. Sci. 25, 429–434 (2000)

    Article  CAS  Google Scholar 

  24. Doublié, S. Preparation of selenomethionyl proteins for phase determination. Methods Enzymol. 276, 523–530 (1997)

    Article  Google Scholar 

  25. Li, X.-M., Momsen, M. M., Brockman, H. L. & Brown, R. E. Lactosylceramide: effect of acyl chain structure on phase behavior and molecular packing. Biophys. J. 83, 1535–1546 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991)

    Article  ADS  CAS  Google Scholar 

  27. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  Google Scholar 

  28. Lamzin, V. S. & Wilson, K. S. Automated refinement of protein models. Acta Crystallogr. D 49, 129–149 (1993)

    Article  CAS  Google Scholar 

  29. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  30. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the personnel at SBC beamline 19BM of the Advanced Photon Source beamline staff for assistance with data collection from multiwavelength anomalous dispersion; A. Serganov for technical support; X. Lin, T. Chung and H. Pike for their contributions to the cloning and expression of the recombinant human GLTP; X.-M. Li for synthesizing and purifying N-18:1 lactosylceramide; A. J. Windebank for help with DNA sequencing at the Mayo Molecular Biology Core Facility; T. Burghardt for help with recording near-ultraviolet CD spectra; and S. Venyaminov in the Franklyn Prendergast laboratory for recording the far-ultraviolet CD spectra. This research was supported by NIH and the Hormel Foundation. Use of the ANL SBC beamlines at the APS was supported by the US Department of Energy, Office of Energy Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rhoderick E. Brown or Dinshaw J. Patel.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table S1

X-ray data collection and refinement statistics. (RTF 47 kb)

Supplementary Figure S1

A two-layer topology of the γ-helices. (PDF 106 kb)

Supplementary Figure S2

Structure of the lactosylceramide-GLTP complex. (PDF 1910 kb)

Supplementary Figure S3

Schematic showing the hydrogen bonding between lactosylceramide and protein side chains in the complex. (PDF 98 kb)

Supplementary Figure S4

Glycolipid transfer activities of wtGLTP and representative GLTPs with point mutations. (PDF 220 kb)

Supplementary Figure S5

Superposition of wild type GLTP and the D48V mutant. (PDF 917 kb)

Supplementary Figure S6

Far UV CD spectra of GLTP mutants. (PDF 116 kb)

Supplementary Figure S7

Near UV CD spectra of GLTP mutants. (PDF 118 kb)

Supplementary Figure S8

Electron density map, sequence and secondary structure elements for apo-GLTP. (PDF 2448 kb)

Supplementary Figure S9

Omit electron density map for a ligand. (PDF 733 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malinina, L., Malakhova, M., Teplov, A. et al. Structural basis for glycosphingolipid transfer specificity. Nature 430, 1048–1053 (2004). https://doi.org/10.1038/nature02856

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02856

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing