Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for vinculin activation at sites of cell adhesion

Abstract

Vinculin is a highly conserved intracellular protein with a crucial role in the maintenance and regulation of cell adhesion and migration1,2,3. In the cytosol, vinculin adopts a default autoinhibited conformation4,5. On recruitment to cell–cell and cell–matrix adherens-type junctions, vinculin becomes activated and mediates various protein–protein interactions that regulate the links between F-actin and the cadherin and integrin families of cell-adhesion molecules. Here we describe the crystal structure of the full-length vinculin molecule (1,066 amino acids), which shows a five-domain autoinhibited conformation in which the carboxy-terminal tail domain is held pincer-like by the vinculin head, and ligand binding is regulated both sterically and allosterically. We show that conformational changes in the head, tail and proline-rich domains are linked structurally and thermodynamically, and propose a combinatorial pathway to activation that ensures that vinculin is activated only at sites of cell adhesion when two or more of its binding partners are brought into apposition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of full-length vinculin in its autoinhibited state.
Figure 2: Accessible surface of Vt in the context of the full-length molecule.
Figure 3: Comparison of vinculin domains 3b and 4 with the ‘M fragment’ of α-catenin.
Figure 4: Calorimetric analysis of vinculin and ligand complexes.

Similar content being viewed by others

References

  1. Volberg, T. et al. Focal adhesion formation by F9 embryonal carcinoma cells after vinculin gene disruption. J. Cell Sci. 108, 2253–2260 (1995)

    CAS  PubMed  Google Scholar 

  2. Xu, W. M., Baribault, H. & Adamson, E. D. Vinculin knockout results in heart and brain defects during embryonic development. Development 125, 327–337 (1998)

    CAS  PubMed  Google Scholar 

  3. DeMali, K. A., Barlow, C. A. & Burridge, K. Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J. Cell Biol. 159, 881–891 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johnson, R. P. & Craig, S. W. An Intramolecular association between the head and tail domains of vinculin modulates talin binding. J. Biol. Chem. 269, 12611–12619 (1994)

    CAS  PubMed  Google Scholar 

  5. Johnson, R. P. & Craig, S. W. F-actin binding site masked by the intramolecular association of vinculin head and tail domains. Nature 373, 261–264 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Winkler, J., Lunsdorf, H. & Jockusch, B. M. The ultrastructure of chicken gizzard vinculin as visualised by high-resolution electron microscopy. J. Struct. Biol. 116, 270–277 (1996)

    Article  CAS  PubMed  Google Scholar 

  7. Bakolitsa, C., de Pereda, J. M., Bagshaw, C. R., Critchley, D. R. & Liddington, R. C. Crystal structure of the vinculin tail suggests a pathway for activation. Cell 99, 603–613 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. Yang, J., Dokurno, P., Tonks, N. K. & Barford, D. Crystal structure of the M-fragment of α-catenin: implications for modulation of cell adhesion. EMBO J. 20, 3645–3656 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Izard, T. et al. Vinculin activation by talin through helical bundle conversion. Nature 427, 171–175 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Pokutta, S., Drees, F., Takai, Y., Nelson, W. J. & Weis, W. I. Biochemical and structural definition of the l-afadin- and actin-binding sites of α-catenin. J. Biol. Chem. 277, 18868–18874 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Pokutta, S. & Weis, W. I. Structure of the dimerization and β-catenin-binding region of α-catenin. Mol. Cell 5, 533–543 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. Miller, G. J. & Ball, E. H. Conformational change in the vinculin C-terminal depends on a critical histidine residue (His-906). J. Biol. Chem. 276, 28829–28834 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Brindle, N. P. J., Holt, M. R., Davies, J. E., Price, C. J. & Critchley, D. R. The focal adhesion vasodilator-stimulated phosphoprotein (VASP) binds to the proline-rich domain in vinculin. Biochem. J. 318, 753–757 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kioka, N. et al. Vinexin: a novel vinculin-binding protein with multiple SH3 domains enhances actin cytoskeletal organisation. J. Cell Biol. 144, 59–69 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huttelmaier, S. et al. The interaction of the cell-contact proteins VASP and vinculin is regulated by phosphatidylinositol-4,5-bisphosphate. Curr. Biol. 8, 479–488 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. Price, G. J. et al. Primary sequence and domain-structure of chicken vinculin. Biochem. J. 259, 453–461 (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bass, M. D. et al. Further characterization of the interaction between the cytoskeletal proteins talin and vinculin. Biochem. J. 362, 761–768 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Imamura, Y., Itoh, M., Maeno, Y., Tsukita, S. & Nagafuchi, A. Functional domains of α-catenin required for the strong state of cadherin-based cell adhesion. J. Cell Biol. 144, 1311–1322 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adey, N. B. & Kay, B. K. Isolation of peptides from phage-displayed random peptide libraries that interact with the talin-binding domain of vinculin. Biochem. J. 324, 523–528 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Steimle, P. A., Hoffert, J. D., Adey, N. B. & Craig, S. W. Polyphosphoinositides inhibit the interaction of vinculin with actin filaments. J. Biol. Chem. 274, 18414–18420 (1999)

    Article  CAS  PubMed  Google Scholar 

  21. Johnson, R. P., Niggli, V., Durrer, P. & Craig, S. W. A conserved motif in the tail domain of vinculin mediates association with and insertion into acidic phospholipid bilayers. Biochemistry 37, 10211–10222 (1998)

    Article  CAS  PubMed  Google Scholar 

  22. Gilmore, A. P. & Burridge, K. Regulation of vinculin binding to talin and actin by phosphatidylinositol-4-5-bisphosphate. Nature 381, 531–535 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Janssen, M. E. W. et al. Three-dimensional structure of vinculin bound to actin filaments. J. Cell Biol. (submitted)

  24. Liddington, R. C. & Bankston, L. A. The structural basis of dynamic cell adhesion: heads, tails and allostery. Exp. Cell Res. 261, 37–43 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. Lim, W. A. The modular logic of signaling proteins: building allosteric switches from simple binding domains. Curr. Opin. Struct. Biol. 12, 61–68 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. Xing, B., Jedsadayanmata, A. & Lam, S. C. Localization of an integrin binding site to the C terminus of talin. J. Biol. Chem. 276, 44373–44378 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. O'Halloran, T., Molony, L. & Burridge, K. Purification and assay of vinculin, metavinculin, and talin. Methods Enzymol. 134, 69–77 (1986)

    Article  CAS  PubMed  Google Scholar 

  28. Uson, I. & Sheldrick, G. M. Advances in direct methods for protein crystallography. Curr. Opin. Struct. Biol. 9, 642–648 (1999)

    Article  Google Scholar 

  29. de la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997)

    Article  CAS  PubMed  Google Scholar 

  30. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Cell Migration Consortium, the NIH, the BBSRC and the Wellcome Trust for financial support; the DOE and staff at SSRL for synchrotron access and support; S. Lam for the talin rod expression vector; M. Zhang for talin expression; and B. Patel for vinculin purification. D.M.C. is supported by a Howard Hughes predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Liddington.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure S1

Shows an alignment of vinculin and α-catenin sequences with the secondary structural elements for vinculin. (DOC 52 kb)

Supplementary Figure S2

Shows an analysis of the effects of mutations in basic collar, C-terminus and basic collar of the vinculin tail domain on PIP2 binding. (DOC 94 kb)

Supplementary Table S1

Table of thermodynamic binding parameters for the binding of -catenin D3 and a helical peptide derived from talin (VBS3 = 1944-1969) to vinculin VH. (DOC 19 kb)

Supplementary Table S2

This table summarizes the crystallographic data collection, phase determination and refinement. (DOC 26 kb)

Supplementary Methods

Describes methods pertaining to the data in Supplementary Figure S2, and additional notes on the method of Differential Scanning Calorimetry. (DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakolitsa, C., Cohen, D., Bankston, L. et al. Structural basis for vinculin activation at sites of cell adhesion. Nature 430, 583–586 (2004). https://doi.org/10.1038/nature02610

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02610

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing