Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A membrane protein required for dislocation of misfolded proteins from the ER

Abstract

After insertion into the endoplasmic reticulum (ER), proteins that fail to fold there are destroyed. Through a process termed dislocation such misfolded proteins arrive in the cytosol, where ubiquitination, deglycosylation and finally proteasomal proteolysis dispense with the unwanted polypeptides. The machinery involved in the extraction of misfolded proteins from the ER is poorly defined. The human cytomegalovirus-encoded glycoproteins US2 and US11 catalyse the dislocation of class I major histocompatibility complex (MHC) products, resulting in their rapid degradation. Here we show that US11 uses its transmembrane domain to recruit class I MHC products to a human homologue of yeast Der1p, a protein essential for the degradation of a subset of misfolded ER proteins. We show that this protein, Derlin-1, is essential for the degradation of class I MHC molecules catalysed by US11, but not by US2. We conclude that Derlin-1 is an important factor for the extraction of certain aberrantly folded proteins from the mammalian ER.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of US11-associated proteins.
Figure 2: Characterization of Derlin-1.
Figure 3: Association of US11WT and the class I HC with Derlin-1.
Figure 5: Expression of a Derlin-1 dominant-negative construct does not inhibit US2-mediated class I HC degradation, but blocks degradation of the US2 protein itself.
Figure 4: Expression of a Derlin-1 dominant-negative construct impedes US11-mediated class I HC degradation.

Similar content being viewed by others

References

  1. Ellgaard, L. & Helenius, A. Quality control in the endoplasmic reticulum. Nature Rev. Mol. Cell Biol. 4, 181–191 (2003)

    Article  CAS  Google Scholar 

  2. Kostova, Z. & Wolf, D. H. For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin–proteasome connection. EMBO J. 22, 2309–2317 (2003)

    Article  CAS  Google Scholar 

  3. Wiertz, E. J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996)

    Article  ADS  CAS  Google Scholar 

  4. Bebok, Z., Mazzochi, C., King, S. A., Hong, J. S. & Sorscher, E. J. The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary. J. Biol. Chem. 273, 29873–29878 (1998)

    Article  CAS  Google Scholar 

  5. de Virgilio, M., Weninger, H. & Ivessa, N. E. Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J. Biol. Chem. 273, 9734–9743 (1998)

    Article  CAS  Google Scholar 

  6. Plemper, R. K., Bohmler, S., Bordallo, J., Sommer, T. & Wolf, D. H. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388, 891–895 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Plemper, R. K. et al. Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation. J. Cell Sci. 112, 4123–4134 (1999)

    CAS  PubMed  Google Scholar 

  8. Sommer, T. & Jentsch, S. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 365, 176–179 (1993)

    Article  ADS  CAS  Google Scholar 

  9. Hiller, M. M., Finger, A., Schweiger, M. & Wolf, D. H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin–proteasome pathway. Science 273, 1725–1728 (1996)

    Article  ADS  CAS  Google Scholar 

  10. Bays, N. W., Gardner, R. G., Seelig, L. P., Joazeiro, C. A. & Hampton, R. Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nature Cell Biol. 3, 24–29 (2001)

    Article  CAS  Google Scholar 

  11. Ye, Y., Meyer, H. H. & Rapoport, T. A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652–656 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Hitchcock, A. L. et al. The conserved npl4 protein complex mediates proteasome-dependent membrane-bound transcription factor activation. Mol. Biol. Cell 12, 3226–3241 (2001)

    Article  CAS  Google Scholar 

  13. Jarosch, E. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nature Cell Biol. 4, 134–139 (2002)

    Article  CAS  Google Scholar 

  14. Bays, N. W., Wilhovsky, S. K., Goradia, A., Hodgkiss-Harlow, K. & Hampton, R. Y. HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol. Biol. Cell 12, 4114–4128 (2001)

    Article  CAS  Google Scholar 

  15. Hampton, R. Y., Gardner, R. G. & Rine, J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 7, 2029–2044 (1996)

    Article  CAS  Google Scholar 

  16. Tortorella, D., Gewurz, B. E., Furman, M. H., Schust, D. J. & Ploegh, H. L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000)

    Article  CAS  Google Scholar 

  17. Wiertz, E. J. et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779 (1996)

    Article  CAS  Google Scholar 

  18. Shamu, C. E., Flierman, D., Ploegh, H. L., Rapoport, T. A. & Chau, V. Polyubiquitination is required for US11-dependent movement of MHC class I heavy chain from endoplasmic reticulum into cytosol. Mol. Biol. Cell 12, 2546–2555 (2001)

    Article  CAS  Google Scholar 

  19. Shamu, C. E., Story, C. M., Rapoport, T. A. & Ploegh, H. L. The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J. Cell Biol. 147, 45–58 (1999)

    Article  CAS  Google Scholar 

  20. Blom, D., Hirsch, C., Stern, P., Tortorella, D. & Ploegh, H. L. A glycosylated type I membrane protein becomes cytosolic when peptide:N-glycanase is compromised. EMBO J. 23, 650–658 (2004)

    Article  CAS  Google Scholar 

  21. Lilley, B. N., Tortorella, D. & Ploegh, H. L. Dislocation of a type I membrane protein requires interactions between membrane-spanning segments within the lipid bilayer. Mol. Biol. Cell 14, 3690–3698 (2003)

    Article  CAS  Google Scholar 

  22. Knop, M., Finger, A., Braun, T., Hellmuth, K. & Der Wolf, D. H. Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J. 15, 753–763 (1996)

    Article  CAS  Google Scholar 

  23. Ye, Y. et al. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature (this issue)

  24. Taxis, C. et al. Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J. Biol. Chem. 278, 35903–35913 (2003)

    Article  CAS  Google Scholar 

  25. Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Travers, K. J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258 (2000)

    Article  CAS  Google Scholar 

  27. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32 (Database issue), D138–D141 (2004)

    Article  CAS  Google Scholar 

  28. Ying, H., Yu, Y. & Xu, Y. Cloning and characterization of F-LANa, upregulated in human liver cancer. Biochem. Biophys. Res. Commun. 286, 394–400 (2001)

    Article  CAS  Google Scholar 

  29. Tsukahara, M., Ji, Z. S., Noguchi, S. & Tsunoo, H. A novel putative transmembrane protein, IZP6, is expressed in neural cells during embryogenesis. Dev. Growth Differ. 43, 285–293 (2001)

    Article  CAS  Google Scholar 

  30. Story, C. M., Furman, M. H. & Ploegh, H. L. The cytosolic tail of class I MHC heavy chain is required for its dislocation by the human cytomegalovirus US2 and US11 gene products. Proc. Natl Acad. Sci. USA 96, 8516–8521 (1999)

    Article  ADS  CAS  Google Scholar 

  31. Snapp, E. L. et al. Formation of stacked ER cisternae by low affinity protein interactions. J. Cell Biol. 163, 257–269 (2003)

    Article  CAS  Google Scholar 

  32. Furman, M. H., Ploegh, H. L. & Tortorella, D. Membrane-specific, host-derived factors are required for US2- and US11-mediated degradation of major histocompatibility complex class I molecules. J. Biol. Chem. 277, 3258–3267 (2002)

    Article  CAS  Google Scholar 

  33. Gewurz, B. E., Ploegh, H. L. & Tortorella, D. US2, a human cytomegalovirus-encoded type I membrane protein, contains a non-cleavable amino-terminal signal peptide. J. Biol. Chem. 277, 11306–11313 (2002)

    Article  CAS  Google Scholar 

  34. Vashist, S. et al. Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J. Cell Biol. 155, 355–368 (2001)

    Article  CAS  Google Scholar 

  35. Plemper, R. K., Egner, R., Kuchler, K. & Wolf, D. H. Endoplasmic reticulum degradation of a mutated ATP-binding cassette transporter Pdr5 proceeds in a concerted action of Sec61 and the proteasome. J. Biol. Chem. 273, 32848–32856 (1998)

    Article  CAS  Google Scholar 

  36. Walter, J., Urban, J., Volkwein, C. & Sommer, T. Sec61p-independent degradation of the tail-anchored ER membrane protein Ubc6p. EMBO J. 20, 3124–3131 (2001)

    Article  CAS  Google Scholar 

  37. Hill, K. & Cooper, A. A. Degradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control system. EMBO J. 19, 550–561 (2000)

    Article  CAS  Google Scholar 

  38. Vashist, S. & Ng, D. T. W. Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J. Cell Biol. 165, 41–52 (2004)

    Article  CAS  Google Scholar 

  39. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004)

    Article  CAS  Google Scholar 

  40. Fiebiger, E., Story, C., Ploegh, H. L. & Tortorella, D. Visualization of the ER-to-cytosol dislocation reaction of a type I membrane protein. EMBO J. 21, 1041–1053 (2002)

    Article  CAS  Google Scholar 

  41. Tirosh, B., Furman, M. H., Tortorella, D. & Ploegh, H. L. Protein unfolding is not a prerequisite for endoplasmic reticulum-to-cytosol dislocation. J. Biol. Chem. 278, 6664–6672 (2003)

    Article  CAS  Google Scholar 

  42. Rehm, A., Stern, P., Ploegh, H. L. & Tortorella, D. Signal peptide cleavage of a type I membrane protein, HCMV US11, is dependent on its membrane anchor. EMBO J. 20, 1573–1582 (2001)

    Article  CAS  Google Scholar 

  43. Tortorella, D. et al. Dislocation of type I membrane proteins from the ER to the cytosol is sensitive to changes in redox potential. J. Cell Biol. 142, 365–376 (1998)

    Article  CAS  Google Scholar 

  44. Sawin, K. E., Mitchison, T. J. & Wordeman, L. G. Evidence for kinesin-related proteins in the mitotic apparatus using peptide antibodies. J. Cell Sci. 101, 303–313 (1992)

    CAS  Google Scholar 

  45. Kinter, M. & Sherman, N. E. Protein Sequencing and Identification using Tandem Mass Spectrometry (Wiley, New York, 2000)

    Book  Google Scholar 

  46. Borodovsky, A. et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149–1159 (2002)

    Article  CAS  Google Scholar 

  47. Ploegh, H. L. in Current Protocols in Protein Science (eds Coligan, J. E., Dunn, B. M., Ploegh, H. L., Speicher, D. W. & Wingfield, P. T.) 10.2.1–10.2.8 (Wiley, New York, 1995)

    Book  Google Scholar 

  48. Green, N., Fang, H., Kalies, K.-U. & Canfield, V. in Current Protocols in Cell Biology (eds Bonifacino, J. S., Dasso, M., Harford, J. B., Lippincott-Schwartz, J. & Yamada, K. M.) 5.2.1–5.2.27 (Wiley, New York, 1998)

    Google Scholar 

Download references

Acknowledgements

We thank B. Kessler and E. Spooner for the preparation of samples and assistance in analysis of mass spectrometry data; R. Tirabassi and K. Ryan for the production of anti-GFP and anti-GRP94 antisera; D. Tortorella for cell lines; and members of the Ploegh laboratory for helpful comments on the manuscript. B.N.L. is a Howard Hughes Medical Institute Predoctoral Fellow. This work was supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidde L. Ploegh.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Alignment of human DERtrin proteins. (PDF 66 kb)

Supplementary Figure 2

Analysis of expression levels and localization of DERtrinGFP constructs in US11 and US2 cells. (PDF 226 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lilley, B., Ploegh, H. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429, 834–840 (2004). https://doi.org/10.1038/nature02592

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02592

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing