Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carbon nanotubes as nanoscale mass conveyors

Abstract

The development of manipulation tools that are not too ‘fat’ or too ‘sticky’ for atomic scale assembly is an important challenge facing nanotechnology1. Impressive nanofabrication capabilities have been demonstrated with scanning probe manipulation of atoms2,3,4,5 and molecules4,6 on clean surfaces. However, as fabrication tools, both scanning tunnelling and atomic force microscopes suffer from a loading deficiency: although they can manipulate atoms already present, they cannot efficiently deliver atoms to the work area. Carbon nanotubes, with their hollow cores and large aspect ratios, have been suggested7,8 as possible conduits for nanoscale amounts of material. Already much effort has been devoted to the filling of nanotubes8,9,10,11 and the application of such techniques12,13. Furthermore, carbon nanotubes have been used as probes in scanning probe microscopy14,15,16. If the atomic placement and manipulation capability already demonstrated by scanning probe microscopy could be combined with a nanotube delivery system, a formidable nanoassembly tool would result. Here we report the achievement of controllable, reversible atomic scale mass transport along carbon nanotubes, using indium metal as the prototype transport species. This transport process has similarities to conventional electromigration, a phenomenon of critical importance to the semiconductor industry17,18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four TEM video images, spaced by one-minute increments, showing left-to-right indium transport on a single MWNT.
Figure 2: Time series of three TEM video images showing reversible indium transport over a distance of more than 2 µm.
Figure 3: Controllable, reversible indium transport.
Figure 4: Reservoir-to-reservoir transport at constant applied power.

Similar content being viewed by others

References

  1. Service, R. F. Is nanotechnology dangerous? Science 290, 1526–1527 (2000)

    Article  CAS  Google Scholar 

  2. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990)

    Article  ADS  CAS  Google Scholar 

  3. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993)

    Article  ADS  CAS  Google Scholar 

  4. Bartels, L., Meyer, G. & Rieder, K. H. Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. Phys. Rev. Lett. 79, 697–700 (1997)

    Article  ADS  CAS  Google Scholar 

  5. Oyabu, N., Custance, O., Yi, I. S., Sugawara, Y. & Morita, S. Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy. Phys. Rev. Lett. 90, 176102 (2003)

    Article  ADS  Google Scholar 

  6. Heinrich, A. J., Lutz, C. P., Gupta, J. A. & Eigler, D. M. Molecule cascades. Science 298, 1381–1387 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Kral, P. & Tomanek, D. Laser-driven atomic pump. Phys. Rev. Lett. 82, 5373–5376 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Supple, S. & Quirke, N. Rapid imbibition of fluids in carbon nanotubes. Phys. Rev. Lett. 90, 214501 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Ajayan, P. M. & Iijima, S. Capillarity-induced filling of carbon nanotubes. Nature 361, 333–334 (1993)

    Article  ADS  CAS  Google Scholar 

  10. Dujardin, E., Ebbesen, T. W., Hiura, H. & Tanigaki, K. Capillarity and wetting of carbon nanotubes. Science 265, 1850–1852 (1994)

    Article  ADS  CAS  Google Scholar 

  11. Pederson, M. R. & Broughton, J. Q. Nanocapillarity in fullerene tubules. Phys. Rev. Lett. 69, 2689–2692 (1992)

    Article  ADS  CAS  Google Scholar 

  12. Gao, Y. H. & Bando, Y. Carbon nanothermometer containing gallium. Nature 415, 599 (2002)

    Article  CAS  Google Scholar 

  13. Ugarte, D., Chatelain, A. & deHeer, W. A. Nanocapillarity and chemistry in carbon nanotubes. Science 274, 1897–1899 (1996)

    Article  ADS  CAS  Google Scholar 

  14. Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L. & Lieber, C. M. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52–55 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Wong, S. S., Harper, J. D., Lansbury, P. T. & Lieber, C. M. Carbon nanotube tips: High-resolution probes for imaging biological systems. J. Am. Chem. Soc. 120, 603–604 (1998)

    Article  CAS  Google Scholar 

  16. Dai, H. J., Hafner, J. H., Rinzler, A. G., Colbert, D. T. & Smalley, R. E. Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147–150 (1996)

    Article  ADS  CAS  Google Scholar 

  17. Pierce, D. G. & Brusius, P. G. Electromigration: a review. Microelectron. Reliab. 37, 1053–1072 (1997)

    Article  Google Scholar 

  18. Collins, P. G., Hersam, M., Arnold, M., Martel, R. & Avouris, P. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 86, 3128–3131 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Cumings, J. P. Electrical and Mechanical Properties of Carbon and Boron Nitride Nanotubes. Ph.D. thesis, Univ. California, Berkeley (2002)

    Google Scholar 

  20. Adamson, A. W. & Gast, A. P. Physical Chemistry of Surfaces (Wiley, New York, 1997)

    Google Scholar 

  21. Duclaux, L. Review of the doping of carbon nanotubes (multiwalled and single-walled). Carbon 40, 1751–1764 (2002)

    Article  CAS  Google Scholar 

  22. Zinke-Allmang, M. Phase separation on solid surfaces: nucleation, coarsening and coalescence kinetics. Thin Solid Films 346, 1–68 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Hummel, R. E. Electromigration and related failure mechanisms in integrated-circuit interconnects. Int. Mater. Rev. 39, 97–111 (1994)

    Article  CAS  Google Scholar 

  24. Kral, P. & Shapiro, M. Nanotube electron drag in flowing liquids. Phys. Rev. Lett. 86, 131–134 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Ghosh, S., Sood, A. K. & Kumar, N. Carbon nanotube flow sensors. Science 299, 1042–1044 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Mingo, N., Yang, L. & Han, J. Current-induced forces upon atoms adsorbed on conducting carbon nanotubes. J. Phys. Chem. B 105, 11142–11147 (2001)

    Article  CAS  Google Scholar 

  27. Yasunaga, H. & Natori, A. Electromigration on semiconductor surfaces. Surf. Sci. Rep. 15, 205–280 (1992)

    Article  ADS  Google Scholar 

  28. Kono, S., Goto, T., Ogura, Y. & Abukawa, T. Surface electromigration of metals on Si(001): In/Si(001). Surf. Sci. 420, 200–212 (1999)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Jensen and S. Rochester for assistance with graphics. This research was supported in part by the US Department of Energy and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zettl.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Movie

This shows the mass transport process as observed in the transmission electron microscope. Driving an electrical current through the nanotube induces indium transport from particle to particle. (MP4 1501 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regan, B., Aloni, S., Ritchie, R. et al. Carbon nanotubes as nanoscale mass conveyors. Nature 428, 924–927 (2004). https://doi.org/10.1038/nature02496

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02496

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing