Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A large population of ‘Lyman-break’ galaxies in a protocluster at redshift z ≈ 4.1

Abstract

The most massive galaxies and the richest clusters are believed to have emerged from regions with the largest enhancements of mass density1,2,3,4 relative to the surrounding space. Distant radio galaxies may pinpoint the locations of the ancestors of rich clusters, because they are massive systems associated with ‘overdensities’ of galaxies that are bright in the Lyman-α line of hydrogen5,6,7. A powerful technique for detecting high-redshift galaxies is to search for the characteristic ‘Lyman break’ feature in the galaxy colour, at wavelengths just shortwards of Lyα, which is due to absorption of radiation from the galaxy by the intervening intergalactic medium. Here we report multicolour imaging of the most distant candidate7,8,9 protocluster, TN J1338–1942 at a redshift z ≈ 4.1. We find a large number of objects with the characteristic colours of galaxies at that redshift, and we show that this excess is concentrated around the targeted dominant radio galaxy. Our data therefore indicate that TN J1338–1942 is indeed the most distant cluster progenitor of a rich local cluster, and that galaxy clusters began forming when the Universe was only ten per cent of its present age.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deep images of Lyα-emitting protocluster galaxies.
Figure 2: The spatial distribution of g-band dropout objects.

Similar content being viewed by others

References

  1. Kaiser, N. On the spatial correlation function of Abell clusters. Astrophys. J. 284, L9–L12 (1984)

    Article  ADS  Google Scholar 

  2. White, S. D. M. & Rees, M. J. Core condensation in heavy halos—A two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978)

    Article  ADS  Google Scholar 

  3. Baugh, C. M., Cole, S., Frenk, C. S. & Lacey, C. G. The epoch of galaxy formation. Astrophys. J. 498, 504–521 (1998)

    Article  ADS  Google Scholar 

  4. Bahcall, N. A. & Fan, X. The most massive distant clusters: Determining Ω and σ8 . Astrophys. J. 504, 1–6 (1998)

    Article  ADS  Google Scholar 

  5. Miley, G. in Extrasolar Planets to Cosmology: The VLT Opening Symposium (eds Bergeron, J. & Renzini, A.) 32–42 (Springer, Berlin, 2000)

    Book  Google Scholar 

  6. Pentericci, L. et al. A search for clusters at high redshift. II. A proto cluster around a radio galaxy at z = 2.16. Astron. Astrophys. 361, L25–L28 (2000)

    ADS  Google Scholar 

  7. Venemans, B. P. et al. The most distant structure of galaxies known: A protocluster at z = 4.1. Astrophys. J. 569, L11–L14 (2002)

    Article  ADS  Google Scholar 

  8. De Breuck, C. et al. VLT spectroscopy of the z = 4.11 radio galaxy TN J1338–1942. Astron. Astrophys. 352, L51–L56 (1999)

    ADS  CAS  Google Scholar 

  9. De Breuck, C., van Breugel, W., Röttgering, H. J. A. & Miley, G. A sample of 669 ultra steep spectrum radio sources to find high redshift radio galaxies. Astron. Astrophys. Suppl. 143, 303–333 (2000)

    Article  ADS  Google Scholar 

  10. Rosati, P. et al. An X-ray-selected galaxy cluster at z = 1.26. Astron. J. 118, 76–85 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Steidel, C. C. et al. A large structure of galaxies at redshift z 3 and its cosmological implications. Astrophys. J. 492, 428–438 (1998)

    Article  ADS  CAS  Google Scholar 

  12. Shimasaku, K. et al. Subaru deep survey IV: Discovery of a large-scale structure at redshift = 5. Astrophys. J. 586, L111–L114 (2003)

    Article  ADS  Google Scholar 

  13. De Breuck, C. et al. Optical and near-infrared imaging of ultra-steep-spectrum radio sources: The K-z diagram of radio-selected and optically selected galaxies. Astron. J. 123, 637–677 (2002)

    Article  ADS  Google Scholar 

  14. Dey, A., van Breugel, W., Vacca, W. D. & Antonucci, R. Triggered star formation in a massive galaxy at z = 3.8: 4C 41.17. Astrophys. J. 490, 698–709 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Pentericci, L. et al. HST images and properties of the most distant radio galaxies. Astrophys. J. 504, 139–146 (1999)

    Article  ADS  Google Scholar 

  16. van Ojik, R. Gas in Distant Radio Galaxies: Probing the Early Universe Thesis, Leiden Univ. (1995)

    Google Scholar 

  17. Steidel, C. C. et al. Lyα imaging of a proto-cluster region at 〈z〉 = 3.09. Astrophys. J. 532, 170–182 (2000)

    Article  ADS  Google Scholar 

  18. Shapley, A. E., Steidel, C. C., Pettini, M. & Adelberger, K. Rest-frame ultraviolet spectra of z 3 Lyman break galaxies. Astrophys. J. 588, 65–89 (2003)

    Article  ADS  Google Scholar 

  19. Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M. & Adelberger, K. Spectroscopic confirmation of a population of normal star-forming galaxies at redshifts z > 3. Astrophys. J. 462, L1–L7 (1999)

    Article  Google Scholar 

  20. Steidel, C. C., Adelberger, K., Giavalisco, M., Dickinson, M. & Pettini, M. Lyman-break galaxies at z > 4 and the evolution of the ultraviolet luminosity density at high redshift. Astrophys. J. 519, 1–17 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Ford, H. C. et al. Advanced camera for the Hubble Space Telescope. Proc. SPIE 3356, 234–248 (1998)

    Article  ADS  Google Scholar 

  22. Madau, P. Radiative transfer in a clumpy universe: The colors of high-redshift galaxies. Astrophys. J. 441, 18–27 (1995)

    Article  ADS  Google Scholar 

  23. Bouwens, R. J., Broadhurst, T. & Illingworth, G. Cloning dropouts: Implications for galaxy evolution at high redshift. Astrophys. J. 593, 640–660 (2003)

    Article  ADS  Google Scholar 

  24. Giavalisco, M. et al. The Great Observatories Origins Deep Survey. Astrophys. J. Lett. (special issue) (in the press)

  25. Somerville, R. S. et al. Cosmic variance in the Great Observatories Origins Deep Survey. Astrophys. J. Lett. (special issue) (in the press); preprint at 〈http://xxx.lanl.gov/astro-ph/0309071〉 (2003)

  26. Blakeslee, J. P., Anderson, K. R., Meurer, G. R., Benítez, N. & Magee, D. An automatic image reduction pipeline for the Advanced Camera for Surveys. ASP Conf. Ser. 295, 257–260 (2003)

    ADS  Google Scholar 

  27. Bertin, E. & Arnouts, S. SExtractor: Software for source extraction. Astron. Astrophys. 117, 393–404 (1996)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George K. Miley.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miley, G., Overzier, R., Tsvetanov, Z. et al. A large population of ‘Lyman-break’ galaxies in a protocluster at redshift z ≈ 4.1. Nature 427, 47–50 (2004). https://doi.org/10.1038/nature02125

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02125

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing