Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neuroanatomy of flying reptiles and implications for flight, posture and behaviour

Abstract

Comparison of birds and pterosaurs, the two archosaurian flyers, sheds light on adaptation to an aerial lifestyle. The neurological basis of control holds particular interest in that flight demands on sensory integration, equilibrium, and muscular coordination are acute1,2,3,4,5,6,7,8. Here we compare the brain and vestibular apparatus in two pterosaurs based on high-resolution computed tomographic (CT) scans from which we constructed digital endocasts. Although general neural organization resembles birds, pterosaurs had smaller brains relative to body mass than do birds. This difference probably has more to do with phylogeny than flight, in that birds evolved from nonavian theropods that had already established trends for greater encephalization5,9. Orientation of the osseous labyrinth relative to the long axis of the skull was different in these two pterosaur species, suggesting very different head postures and reflecting differing behaviours. Their enlarged semicircular canals reflect a highly refined organ of equilibrium, which is concordant with pterosaurs being visually based, aerial predators. Their enormous cerebellar floccular lobes may suggest neural integration of extensive sensory information from the wing, further enhancing eye- and neck-based reflex mechanisms for stabilizing gaze.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationships and skulls of pterosaur taxa.
Figure 2: Endocasts and labyrinths of pterosaurs compared to brains of extant archosaurs.
Figure 3: Relative brain size in pterosaurs compared to birds and other reptiles.
Figure 4: Skull and head postures of pterosaurs.

Similar content being viewed by others

References

  1. Newton, E. T. On the skull, brain, and auditory organ of a new species of pterosaurian (Scaphognathus purdoni), from the Upper Lias near Whitby Yorkshire. Phil. Trans. R. Soc. Lond. B 179, 503–537 (1888)

    Article  ADS  Google Scholar 

  2. Edinger, T. Das Gehirn der Pterosaurier. Z. Anat. Entwicklungsgesch. 82, 105–112 (1927)

    Article  Google Scholar 

  3. Edinger, T. The brain of Pterodactylus. Am. J. Sci. 239, 665–682 (1941)

    Article  ADS  Google Scholar 

  4. Jerison, H. J. Evolution of the Brain and Intelligence 482 (Academic, New York, 1973)

    Google Scholar 

  5. Hopson, J. A. in Biology of the Reptilia Vol. 9 Neurology A (eds Gans, C., Northcutt, R. G. & Ulinki, P.) 39–146 (Academic, New York, 1979)

    Google Scholar 

  6. Wellnhofer, P. The Illustrated Encyclopedia of Pterosaurs 192 (Crescent, New York, 1991)

    Google Scholar 

  7. Bennett, S. C. The osteology and functional morphology of the Late Cretaceous pterosaur Pteranodon. Part I. General description of osteology. Palaeontogr. Abt. A 260, 1–112 (2001)

    Google Scholar 

  8. Wharton, D. S. The Evolution of the Avian Brain 343. PhD thesis, Univ. Bristol (2002)

    Google Scholar 

  9. Larsson, H. C. E., Sereno, P. C. & Wilson, J. A. Forebrain enlargement among nonavian theropod dinosaurs. J. Vert. Paleontol. 20, 615–618 (2000)

    Article  Google Scholar 

  10. Brochu, C. A. Progress and future directions in archosaur phylogenetics. J. Paleontol. 75, 1185–1201 (2001)

    Article  Google Scholar 

  11. Kellner, A. W. A. Description of the braincase of two Early Cretaceous pterosaurs (Pterodactyloidea) from Brazil. Am. Mus. Novit. 3175, 1–34 (1996)

    Google Scholar 

  12. Lebedkin, S. Über die Lage des Canalis semicircularis lateralis bei Säugern. Anat. Anz. 58, 447–460 (1924)

    Google Scholar 

  13. Duijm, M. On the head posture of some birds and its relation to some anatomical features. Proc. Koninkl. Nederl. Akad. Wetensch. C 54, 202–211, 260–271 (1951)

    Google Scholar 

  14. Blanks, R. H. I., Curthoys, I. S. & Markham, C. H. Planar relationships of semicircular canals in the cat. Am. J. Physiol. 223, 55–62 (1972)

    Article  CAS  Google Scholar 

  15. Erichsen, J. T., Hodos, W., Evinger, C., Bessette, B. B. & Phillips, S. J. Head orientation in pigeons: postural, locomotor and visual determinants. Brain Behav. Evol. 33, 268–278 (1989)

    Article  CAS  Google Scholar 

  16. Spoor, F. & Zonneveld, F. Comparative review of the human bony labyrinth. Yearbook Phys. Anthropol. 41, 211–251 (1998)

    Article  Google Scholar 

  17. de Beer, G. R. How animals hold their heads. Proc. Linn. Soc. Lond. 159, 125–139 (1947)

    Article  Google Scholar 

  18. Chatterjee, S. & Templin, R. J. Posture, locomotion and paleoecology of pterosaurs. Geol. Soc. Am. Spec. Pap. (in the press)

  19. Unwin, D. M., Lü, J. & Bakhurina, N. N. On the systematic and stratigraphic significance of pterosaurs from the Lower Cretaceous Yixian Formation (Jehol Group) of Liaoning, China. Mitt. Mus. Naturk. Berlin Geowiss. Reihe 3, 181–206 (2000)

    Google Scholar 

  20. Jones, G. M. & Spells, K. E. A theoretical and comparative study of the functional dependence of the semicircular canal upon its physical dimensions. Proc. R. Soc. Lond. B 157, 403–419 (1963)

    Article  ADS  CAS  Google Scholar 

  21. Turkewitsch, B. G. Zur Anatomie des Gehörorgans der Vögel (Canales semicirculares). Z. Anat. Entwicklungsgesch. 103, 551–608 (1934)

    Article  Google Scholar 

  22. Spoor, F., Bajpal, S., Hussain, S. T., Kumar, K. & Thewissen, J. G. M. Vestibular evidence for the evolution of aquatic behavior in early cetaceans. Nature 417, 163–166 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Butler, A. B. & Hodos, W. Comparative Vertebrate Neuroanatomy: Evolution and Adaptation 514 (Wiley-Liss, New York, 1996)

    Google Scholar 

  24. Winship, I. R. & Wylie, D. R. W. Zonal organization of the vestibulocerebellum in pigeons (Columba livia): I. Climbing fiber input to the flocculus. J. Comp. Neurol. 456, 127–139 (2003)

    Article  Google Scholar 

  25. Wellnhofer, P. Die Rhamphorhynchoidea (Pterosauria) der Oberjura-Plattenkalke Süddeutschlands. Teil I. Allgemeine Skelettmorphologie. Palaeontogr. Abt. A 148, 1–33 (1975)

    Google Scholar 

  26. Kellner, A. W. A. & Tomida, Y. Description of a new species of Anhangueridae (Pterodactyloidea) with comments on the pterosaur fauna from the Santana Formation (Aptian-Albian), northeastern Brazil. Nat. Sci. Mus. Monogr. 17, 1–135 (2000)

    Google Scholar 

  27. Tischlinger, H. & Frey, E. Ein Rhamphorhynchus (Pterosauria, Reptilia) mit ungewöhnlicher Flughauterhaltung aus dem Solnhofener Plattenkalk. Archaeopteryx 20, 1–20 (2002)

    Google Scholar 

  28. Hurlburt, G. R. . Relative Brain Size in Recent and Fossil Amniotes: Determination and Interpretation 250. PhD thesis, Univ. Toronto (1996)

    Google Scholar 

  29. Romer, A. S. Osteology of the Reptiles 772 (Univ. Chicago Press, Chicago, 1956)

    Google Scholar 

  30. Proctor, N. S. & Lynch, P. J. Manual of Ornithology 340 (Yale Univ. Press, New Haven, 1993)

    Google Scholar 

Download references

Acknowledgements

D. S. Berman (Carnegie Museum of Natural History) and J. Maisey (American Museum of Natural History) agreed to the loan and preparation of the pterosaur specimens. M. Atanassov assisted with body mass estimates and other morphometrics. Z. Zheng acid-prepared the fossils. M. Colbert, J. Humphries, R. Ketcham, and J. Maisano assisted with the CT scanning, data processing, and web delivery. Figures were drafted by R. Ridgely (Figs 2 and 3a, c) and K. McQuilkin (Fig. 3b, d, e and Fig. 4). We thank G. R. Hurlburt and D. S. Wharton for sharing data in their doctoral dissertations. We thank G. R. Hurlburt, P. M. O'Connor, E. Weber, and D. S. Wharton for fruitful discussion of pterosaurs and neuroscience, and R. J. Templin for providing aerodynamic expertise. The manuscript benefited from comments provided by D. M. Unwin & S. C. Bennett. Funding was provided by NSF grants to L.M.W. and T.R. and by Texas Tech University to S.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence M. Witmer.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

41586_2003_BFnature02048_MOESM1_ESM.mov

Supplementary Movie: Anhan_waxspin.mov: QuickTime movie of reconstructed skull spinning axially around a longitudinal axis (MOV 1872 kb)

41586_2003_BFnature02048_MOESM2_ESM.mov

Supplementary Movie: Anhan_whorspin.mov: QuickTime movie of reconstructed skull spinning horizontally around a vertical axis (MOV 1782 kb)

41586_2003_BFnature02048_MOESM3_ESM.mov

Supplementary Movie: Anhan_wsagspin.mov: QuickTime movie of reconstructed skull spinning sagittally around a transverse axis (MOV 1770 kb)

Supplementary Movie: Anhan_transv_slices.mov: QuickTime movie of serial transverse CT slices (MOV 2061 kb)

Supplementary Movie: Anhan_horiz_slices.mov: QuickTime movie of serial horizontal CT slices (MOV 1875 kb)

Supplementary Movie: Anhan_sag_slices.mov: QuickTime movie of serial sagittal CT slices (MOV 1756 kb)

41586_2003_BFnature02048_MOESM7_ESM.mov

Supplementary Movie: Anhan_RollSpinEndocast.mov: QuickTime movie of reconstructed endocast spinning horizontally around a vertical axis (MOV 561 kb)

41586_2003_BFnature02048_MOESM8_ESM.mov

Supplementary Movie: Anhan_YawSpinEndocast.mov: QuickTime movie of reconstructed endocast spinning axially around a longitudinal axis (MOV 722 kb)

41586_2003_BFnature02048_MOESM9_ESM.mov

Supplementary Movie: Rhamph_RollSpinHeadSkel.mov: QuickTime movie of reconstructed skull spinning axially around a longitudinal axis (MOV 1290 kb)

41586_2003_BFnature02048_MOESM10_ESM.mov

Supplementary Movie: Rhamph_YawSpinHeadSkel.mov: QuickTime movie of reconstructed skull spinning horizontally around a vertical axis (MOV 719 kb)

41586_2003_BFnature02048_MOESM11_ESM.mov

Supplementary Movie: Rhamph_PitchSpinHeadSkel.mov: QuickTime movie of reconstructed skull spinning sagittally around a transverse axis (MOV 1006 kb)

Supplementary Movie: Rhamph_transv_slices.mov: QuickTime movie of serial transverse CT slices (MOV 3625 kb)

Supplementary Movie: Rhamph_hor_slices.mov: QuickTime movie of serial horizontal CT slices (MOV 1198 kb)

Supplementary Movie: Rhamph_sag_slices.mov: QuickTime movie of serial sagittal CT slices (MOV 1215 kb)

41586_2003_BFnature02048_MOESM15_ESM.mov

Supplementary Movie: Rhamph_YawSpinEndocast.mov: QuickTime movie of reconstructed endocast spinning horizontally around a vertical axis (MOV 661 kb)

41586_2003_BFnature02048_MOESM16_ESM.mov

Supplementary Movie: Rhamph_RollSpinEndocast.mov: QuickTime movie of reconstructed endocast spinning axially around a longitudinal axis (MOV 929 kb)

Supplementary Movie legends (DOC 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witmer, L., Chatterjee, S., Franzosa, J. et al. Neuroanatomy of flying reptiles and implications for flight, posture and behaviour. Nature 425, 950–953 (2003). https://doi.org/10.1038/nature02048

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02048

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing