Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Widespread horizontal transfer of mitochondrial genes in flowering plants

Abstract

Horizontal gene transfer—the exchange of genes across mating barriers—is recognized as a major force in bacterial evolution1,2. However, in eukaryotes it is prevalent only in certain phagotrophic protists and limited largely to the ancient acquisition of bacterial genes3,4,5. Although the human genome was initially reported6 to contain over 100 genes acquired during vertebrate evolution from bacteria, this claim was immediately and repeatedly rebutted7,8. Moreover, horizontal transfer is unknown within the evolution of animals, plants and fungi except in the special context of mobile genetic elements9,10,11,12. Here we show, however, that standard mitochondrial genes, encoding ribosomal and respiratory proteins, are subject to evolutionarily frequent horizontal transfer between distantly related flowering plants. These transfers have created a variety of genomic outcomes, including gene duplication, recapture of genes lost through transfer to the nucleus, and chimaeric, half-monocot, half-dicot genes. These results imply the existence of mechanisms for the delivery of DNA between unrelated plants, indicate that horizontal transfer is also a force in plant nuclear genomes, and are discussed in the contexts of plant molecular phylogeny and genetically modified plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anomalous presence of ribosomal protein genes in three angiosperm mitochondrial DNAs. A consensus phylogeny of 280 angiosperms is marked according to the presence (red branches) or absence (blue branches) of rps2 (a) and rps11 (b) in mitochondrial DNA (tree topology and gene presence/absence data are from ref.
Figure 2: Phylogenetic evidence for HGT in angiosperm mitochondrial DNA.
Figure 3: Chimaeric structure of the Sanguinaria rps11 gene.
Figure 4: Approximate timing and donor–recipient relationships of five HGT ‘events’ in angiosperm mitochondrial DNA.

Similar content being viewed by others

References

  1. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. Koonin, E. V., Makarova, K. S. & Aravind, L. Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55, 709–742 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nixon, J. E. et al. Evidence for lateral transfer of genes encoding ferredoxins, nitro-reductases, NADH oxidase, and alcohol dehydrogenase 3 from anaerobic prokaryotes to Giardia lamblia and Entamoeba histolytica. Eukaryotic Cell 1, 181–190 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andersson, J. O., Sjögren, Å. M., Davis, L. A. M., Embley, T. M. & Roger, A. J. Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr. Biol. 13, 94–104 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. Archibald, J. M., Rogers, M. B., Toop, M., Ishida, K.-I. & Keeling, P. J. Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga, Bigelowiella natans. Proc. Natl Acad. Sci. USA 100, 7678–7683 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. Stanhope, M. J. et al. Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 411, 940–944 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Salzberg, S. L., White, O., Peterson, J. & Eisen, J. A. Microbial genes in the human genome: lateral transfer or gene loss? Science 292, 1903–1906 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Robertson, H. M. in Mobile DNA II (eds Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A. M.) 1093–1110 (ASM, Washington DC, 2002)

    Book  Google Scholar 

  10. Eickbush, T. H. & Malik, H. S. in Mobile DNA II (eds Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A. M.) 1111–1144 (ASM, Washington DC, 2002)

    Book  Google Scholar 

  11. Goddard, M. R. & Burt, A. Recurrent invasion and extinction of a selfish gene. Proc. Natl Acad. Sci. USA 96, 13880–13885 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cho, Y., Qiu, Y.-L., Kuhlman, P. & Palmer, J. D. Explosive invasion of plant mitochondria by a group I intron. Proc. Natl Acad. Sci. USA 95, 14244–14249 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adams, K. L., Qiu, Y. L., Stoutemyer, M. & Palmer, J. D. Punctuated evolution of mitochondrial gene content: High and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc. Natl Acad. Sci. USA 99, 9905–9912 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wolfe, K. H., Li, W. S. & Sharp, P. M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl Acad. Sci. USA 84, 9054–9058 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Laroche, J., Li, P., Maggia, L. & Bousquet, J. Molecular evolution of angiosperm mitochondrial introns and exons. Proc. Natl Acad. Sci. USA 94, 5722–5727 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Adams, K. L., Daley, D. O., Qiu, Y. L., Whelan, J. & Palmer, J. D. Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408, 354–357 (2000)

    CAS  PubMed  Google Scholar 

  17. Maynard Smith, J. Analyzing the mosaic structure of genes. J. Mol. Evol. 34, 126–129 (1992)

    Google Scholar 

  18. Qiu, Y. L. et al. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402, 404–407 (1999)

    Article  CAS  PubMed  Google Scholar 

  19. Barkman, T. J. et al. Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proc. Natl Acad. Sci. USA 97, 13166–13171 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adams, K. L. et al. Intracellular gene transfer in action: Dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes. Proc. Natl Acad. Sci. USA 96, 13863–13868 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wikstrom, N., Savolainen, V. & Chase, M. W. Evolution of the angiosperms: Calibrating the family tree. Proc. R. Soc. Lond. B 268, 2211–2220 (2001)

    Article  CAS  Google Scholar 

  22. Feschotte, C. & Wessler, S. R. Mariner-like transposases are widespread and diverse in flowering plants. Proc. Natl Acad. Sci. USA 99, 280–285 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. Intrieri, M. C. & Buiatti, M. The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol. Phylogenet. Evol. 20, 100–110 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Blanchard, J. L. & Schmidt, G. W. Pervasive migration of organellar DNA to the nucleus in plants. J. Mol. Evol. 41, 397–406 (1995)

    Article  CAS  PubMed  Google Scholar 

  25. Stupar, R. M. et al. Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: Implication of potential sequencing errors caused by large-unit repeats. Proc. Natl Acad. Sci. USA 98, 5099–5103 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zardoya, R., Ding, X. D., Kitagawa, Y. & Chrispeels, M. J. Origin of plant glycerol transporters by horizontal gene transfer and functional recruitment. Proc. Natl Acad. Sci. USA 99, 14893–14896 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Swofford, D. L. PAUP*: Phylogenetic analysis using parsimony (*and other methods) Version 4 (Sinauer, Sunderland, Massachusetts, 1998).

  28. Hulsenbeck, J. P. & Ronquist, F. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001)

    Article  Google Scholar 

  29. Shimodaira, H. & Hasegawa, M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16, 1114–1116 (1999)

    Article  CAS  Google Scholar 

  30. Kadowaki, K., Kubo, N., Ozawa, K. & Hirai, A. Targeting presequence acquisition after mitochondrial gene transfer to the nucleus occurs by duplication of existing targeting signals. EMBO J. 15, 6652–6666 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Mathews for technical assistance; E. Knox for creating Fig. 4, for drafting Fig. 1 and for discussion; L. Goertzen, E. Knox, R. Olmstead, D. Rice and S. Stefanovic for critical reading of the manuscript; R. Gardner for providing several Actinidia DNAs; M. Stoutemyer and J. Gastony for help in obtaining plant material; and B. Hall and the University of California Santa Cruz arboretum for supplying leaf material for Amborella. Financial support was provided by the US NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Palmer.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

41586_2003_BFnature01743_MOESM1_ESM.pdf

Supplementary Figure 1: Phylogenetic trees of rps2 and rps11 that show much greater divergence of nuclear than mitochondrial genes in plants. (PDF 192 kb)

Supplementary Figure 2: Nucleotide alignment used for the rps2 analysis shown in Fig. 2a of the main text. (PDF 84 kb)

41586_2003_BFnature01743_MOESM3_ESM.pdf

Supplementary Figure 3: Nucleotide alignment used for the rps11 analysis shown in Fig. 2b, 2d and 2e of the main text. (PDF 134 kb)

Supplementary Figure 4: Nucleotide alignment used for the atp1 analysis shown in Fig. 2f of the main text. (PDF 378 kb)

41586_2003_BFnature01743_MOESM5_ESM.pdf

Supplementary Figure 5: Nucleotide alignment used for the rps11 upstream sequence analysis shown in Fig. 2c of the main text. (PDF 36 kb)

Supplementary Figure Legends (DOC 21 kb)

Supplementary Table 1: Primers for PCR and DNA sequencing used in this study. (DOC 30 kb)

41586_2003_BFnature01743_MOESM8_ESM.doc

Supplementary Information: 1) Ruling out DNA contamination or mix-up, 2) Mitochondrial provenance of horizontally-acquired plant genes, 3) The tip of an iceberg of mitochondrial HGT in plants, 4) Parametric bootstrapping 5) Supplemental references. (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergthorsson, U., Adams, K., Thomason, B. et al. Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424, 197–201 (2003). https://doi.org/10.1038/nature01743

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01743

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing