Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles

Abstract

Quantum information science attempts to exploit capabilities from the quantum realm to accomplish tasks that are otherwise impossible in the classical domain1. Although sufficient conditions have been formulated for the physical resources required to achieve quantum computation and communication2, there is a growing understanding of the power of quantum measurement combined with the conditional evolution of quantum states for accomplishing diverse tasks in quantum information science3,4,5. For example, a protocol has recently been developed6 for the realization of scalable long-distance quantum communication and the distribution of entanglement over quantum networks. Here we report the first enabling step in the realization of this protocol, namely the observation of quantum correlations for photon pairs generated in the collective emission from an atomic ensemble. The nonclassical character of the fields is demonstrated by the violation of an inequality involving their normalized correlation functions. Compared to previous investigations of non-classical correlations for photon pairs produced in atomic cascades7 and in parametric down-conversion8, our experiment is distinct in that the correlated photons are separated by a programmable time interval (of about 400 nanoseconds in our initial experiments).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A simplified schematic of the experiment is presented.
Figure 2: Normalized singles counts ni(t) are shown for the ‘write’, ‘read’ and (1,2) fields.
Figure 3: Time-resolved coincidences nα,β(τ) between the (1,1), (2,2) and (1,2) fields are displayed versus time delay τ.

Similar content being viewed by others

References

  1. Preskill, J. P. Quantum Computation Lecture Notes for Physics 219/Computer Science 219 〈http://www.theory.caltech.edu/people/preskill/ph229/〉.

  2. DiVincenzo, D. P. The physical implementation of quantum computation. Fortsch. Phys. 48, 771–783 (2000)

    Article  ADS  Google Scholar 

  3. Bose, S., Knight, P. L., Plenio, M. B. & Vedral, V. Proposal for teleportation of an atomic state via cavity decay. Phys. Rev. Lett. 83, 5158–5161 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Duan, L.-M., Lukin, M., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Clauser, J. F. Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect. Phys. Rev. D 9, 853–860 (1974)

    Article  ADS  CAS  Google Scholar 

  8. Mandel, L. Quantum effects in one-photon and two-photon interference. Rev. Mod. Phys. 71(2), S274–S282 (1999)

    Article  CAS  Google Scholar 

  9. Briegel, H.-J., Duer, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1999)

    Article  ADS  Google Scholar 

  10. Enk, S. J., Cirac, J. I. & Zoller, P. Photonic channels for quantum communication. Science 279, 205–208 (1998)

    Article  ADS  Google Scholar 

  11. Duan, L.-M. Entangling many atomic ensembles with laser manipulation. Phys. Rev. Lett. 88, 170402–170405 (2002)

    Article  ADS  Google Scholar 

  12. Metcalf, H. J. & van der Straten, P. Laser Cooling and Trapping (Springer, 1999)

    Book  Google Scholar 

  13. Kitagawa, M. & Ueda, M. Nonlinear-interferometric generation of number-phase correlated fermion states. Phys. Rev. Lett. 67, 1852–1854 (1991)

    Article  ADS  CAS  Google Scholar 

  14. Wineland, D. J., Bollinger, J. J., Itano, W. M. & Moore, F. L. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992)

    Article  ADS  CAS  Google Scholar 

  15. Kuzmich, A., Mølmer, K. & Polzik, E. S. Spin squeezing in an ensemble of atoms illuminated with squeezed light. Phys. Rev. Lett. 79, 4782–4785 (1997)

    Article  ADS  CAS  Google Scholar 

  16. Kuzmich, A., Bigelow, N. P. & Mandel, L. Atomic quantum non-demolition measurements and squeezing. Europhys. Lett. A 42, 481–486 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Mølmer, K. Twin-correlations in atoms. Eur. Phys. J. D 5, 301–305 (1999)

    Article  ADS  Google Scholar 

  18. Hald, J., Sørensen, J. L., Schori, C. & Polzik, E. S. Spin squeezed atoms: A macroscopic entangled ensemble created by light. Phys. Rev. Lett. 83, 1319–1320 (1999)

    Article  ADS  Google Scholar 

  19. Kuzmich, A., Mandel, L. & Bigelow, N. P. Generation of spin squeezing via continuous quantum non-demolition measurements. Phys. Rev. Lett. 85, 1594–1597 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001)

    Article  ADS  CAS  Google Scholar 

  21. Duan, L.-M., Cirac, J. I. & Zoller, P. Three-dimensional theory for interaction between atomic ensembles and free-space light. Phys. Rev. A. 66, 023818 (2002)

    Article  ADS  Google Scholar 

  22. Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Harris, S. E. & Hau, L. V. Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611–4614 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Zibrov, A. S. et al. Transporting and time reversing light via atomic coherence. Phys. Rev. Lett. 88, 103601 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, UK, 1995)

    Book  Google Scholar 

  26. Schori, C., Julsgaard, B., Sørensen, J. L. & Polzik, E. S. Recording quantum properties of light in a long-lived atomic spin state: Towards quantum memory. Phys. Rev. Lett. 89, 057903 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Pelton, M. et al. Efficient source of single photons: A single dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002)

    Article  ADS  Google Scholar 

  28. Alexandrov, E. B., Balabas, M. V., Pasgalev, A. S., Verkhovskii, A. K. & Yakobson, N. N. Double-resonance atomic magnetometers: from gas discharge to laser pumping. Laser Phys. 6, 244–251 (1996)

    CAS  Google Scholar 

  29. van der Wal, C. H. et al. Atomic memory for correlated photon states. Science, published online 22 May 2003 (doi:10.1126/science.1085946).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

H.J.K. gratefully acknowledges interactions with M. D. Lukin about various aspects of the experiment. This work was supported by the National Science Foundation, by the Caltech MURI Center for Quantum Networks, and by the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Kimble.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzmich, A., Bowen, W., Boozer, A. et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423, 731–734 (2003). https://doi.org/10.1038/nature01714

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01714

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing