Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chibby, a nuclear β-catenin-associated antagonist of the Wnt/Wingless pathway

Abstract

Inappropriate activation of downstream target genes by the oncoprotein β-catenin is implicated in development of numerous human cancers1,2. β-catenin and its fruitfly counterpart Armadillo act as a coactivator in the canonical Wnt/Wingless pathway by binding to Tcf/Lef transcription factors3,4,5,6. Here we report a conserved nuclear protein, named Chibby, which was identified in a screen for proteins that directly interact with the C-terminal region of β-catenin. In mammalian cultured cells we demonstrate that Chibby inhibits β-catenin-mediated transcriptional activation by competing with Lef-1 to bind to β-catenin. Inhibition of Drosophila Chibby by RNA interference results in segment polarity defects that mimick a wingless gain-of-function phenotype, and overexpression of the wingless target genes engrailed and Ultrabithorax. In addition, epistasis experiments indicate that chibby acts downstream of wingless and upstream of armadillo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNAi of cby in Drosophila embryos causes ectopic activation of the wg pathway.
Figure 2: Cby encodes a nuclear protein.
Figure 3: Physical interaction between Cby and β-catenin.
Figure 4: Cby antagonizes β-catenin signalling.
Figure 5: Genetic relationship between cby and genes in the wg pathway.

Similar content being viewed by others

References

  1. Miller, J. R., Hocking, A. M., Brown, J. D. & Moon, R. T. Mechanism and function of signal transduction by the Wnt/β-catenin and Wnt/Ca2 + pathways. Oncogene 18, 7860–7872 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000)

    CAS  PubMed  Google Scholar 

  3. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996)

    Article  CAS  PubMed  Google Scholar 

  5. Brunner, E., Peter, O., Schweizer, L. & Basler, K. pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385, 829–833 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. Peifer, M., Berg, S. & Reynolds, A. B. A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76, 789–791 (1994)

    Article  CAS  PubMed  Google Scholar 

  8. Hsu, S. C., Galceran, J. & Grosschedl, R. Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with β-catenin. Mol. Cell Biol. 18, 4807–4818 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hecht, A., Litterst, C. M., Huber, O. & Kemler, R. Functional characterization of multiple transactivating elements in β-catenin, some of which interact with the TATA-binding protein in vitro. J. Biol. Chem. 274, 18017–18025 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. Broder, Y. C., Katz, S. & Aronheim, A. The Ras recruitment system, a novel approach to the study of protein- protein interactions. Curr. Biol. 8, 1121–1124 (1998)

    Article  CAS  PubMed  Google Scholar 

  11. Takemaru, K.-I. & Moon, R. T. The transcriptional coactivator CBP interacts with β-catenin to activate gene expression. J. Cell Biol. 149, 249–254 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC -/- colon carcinoma. Science 275, 1784–1787 (1997)

    Article  CAS  PubMed  Google Scholar 

  13. Yost, C. et al. The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10, 1443–1454 (1996)

    Article  CAS  PubMed  Google Scholar 

  14. Shtutman, M. et al. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc. Natl Acad. Sci. USA 96, 5522–5527 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Noordermeer, J., Johnston, P., Rijsewijk, F., Nusse, R. & Lawrence, P. A. The consequences of ubiquitous expression of the wingless gene in the Drosophila embryo. Development 116, 711–719 (1992)

    CAS  PubMed  Google Scholar 

  16. Peifer, M. & Wieschaus, E. The segment polarity gene armadillo encodes a functionally modular protein that is the Drosophila homolog of human plakoglobin. Cell 63, 1167–1176 (1990)

    Article  CAS  PubMed  Google Scholar 

  17. Lee, Y. S. & Carthew, R. W. Making a better RNAi vector for Drosophila: Use of intron spacers. Methods (in the press)

  18. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Cadigan, K. M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997)

    Article  CAS  PubMed  Google Scholar 

  20. Sanson, B., Alexandre, C., Fascetti, N. & Vincent, J.-P. Engrailed and hedgehog make the range of wingless asymmetric in Drosophila embryos. Cell 98, 207–216 (1999)

    Article  CAS  PubMed  Google Scholar 

  21. Peifer, M., Sweeton, D., Casey, M. & Wieschaus, E. wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo. Development 120, 369–380 (1994)

    CAS  PubMed  Google Scholar 

  22. Yu, X., Hoppler, S., Eresh, S. & Bienz, M. decapentaplegic, a target gene of the wingless signalling pathway in the Drosophila midgut. Development 122, 849–858 (1996)

    CAS  PubMed  Google Scholar 

  23. Yu, X., Riese, J., Eresh, S. & Bienz, M. Transcriptional repression due to high levels of Wingless signalling. EMBO J. 17, 7021–7032 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Garcia-Rostan, G. et al. β-Catenin dysregulation in thyroid neoplasms. Am. J. Pathol. 158, 987–996 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fukuchi, T. et al. β-Catenin mutation in carcinoma of the uterine endometrium. Cancer Res. 58, 3526–3528 (1998)

    CAS  PubMed  Google Scholar 

  26. Andrews, N. C. & Faller, D. V. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 19, 2499 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kennerdell, J. R. & Carthew, R. W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled2 act in the wingless pathway. Cell 95, 1017–1026 (1998)

    Article  CAS  PubMed  Google Scholar 

  28. Carthew, R. W. in Gene Silencing (ed. Hannon, G.) (Cold Spring Harbor Laboratory Press, New York, 2003)

    Google Scholar 

  29. Tautz, D. & Pfeifle, C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81–85 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Holmgren, R. Pestell, M. Waterman and DSHB for reagents; M. Peifer, J. Treisman and Bloomington Stock Center for fly stocks; R. Holmgren, F.-Q. Li and members of the Carthew and Moon laboratories for critically reading the manuscript. This work was supported by postdoctoral fellowships from the Japan Science and Technology Corporation and Uehara Memorial Foundation (to K.-I.T.), the Pew Charitable Trust (to R.W.C.), and by an NIH grant (to R.T.M.). R.T.M. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall T. Moon.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takemaru, KI., Yamaguchi, S., Lee, Y. et al. Chibby, a nuclear β-catenin-associated antagonist of the Wnt/Wingless pathway. Nature 422, 905–909 (2003). https://doi.org/10.1038/nature01570

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01570

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing