
large inherent dependence on temperature, we concluded that the folding reaction is at
least near the Kramers high friction limit.

Computational
The double-well potential used was g(x) ¼ x 4 2 2x 2. Temperature effects were treated as a
linear bias along the reaction coordinate, t(x,T) ¼ A(T)x, where A(T) is an adjustable
parameter for matching the equilibrium data. The folded and unfolded states are
separated by 2 distance units along the reaction coordinate, corresponding to a typical
helix diffusion length when taken to be nanometres. The population at x , 0.83 was
assumed to have the same fluorescence signature as the unfolded state, and at x . 0.83 as
the folded state (for compatibility with the three-well model in the Supplementary
Information, any value x . 0 yields the same qualitative result). Fluorescence was
simulated by convolving populations (for example Fig. 4b) with this response. The one-
dimensional Langevin equation with gaussian white noise was integrated by using a
fourth-order Runge–Kutta method. A time-step size of 0.01 was used in the integration,
and time steps were scaled to match the experimentally observed absolute kinetics. Similar
calculations for a three-well model that also matches the data are described in the
Supplementary Information.
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In the seventh panel of Fig. 2 of this Letter, the V5 sequence of clone
391-3 appeared incorrectly as: SEKDQTEIFRP. It should read:
SKDNQTEIFRP. In addition, there should be no yellow shading
(indicating a change in glycosylation) for this sequence. A
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It has come to our attention that we failed to cite a relevant study1

in our Letter. These authors identified the mechanism of synaptic
depression measured at the embryonic chick nucleus magno-
cellularis to nucleus laminaris synapse as primarily presynaptic,
which justifies the synaptic depletion model we used. Furthermore,
the narrowing of coincidence detection time windows with EPSP
depression as they observed may contribute to the adaptive mecha-
nisms that we described. A

1. Kuba, H., Konomi, K. & Ohmori, H. Eur. J. Neurosci. 15, 984–990 (2002).
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Leonid Gitlin, Sveta Karelsky & Raul Andino
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In Fig. 5a of this Letter, the first and third panels (untreated and
siL-treated cells, respectively) should not be identical: the correct
figure is shown here. A
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