Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single-crystal gallium nitride nanotubes

Abstract

Since the discovery of carbon nanotubes in 1991 (ref. 1), there have been significant research efforts to synthesize nanometre-scale tubular forms of various solids2,3,4,5,6,7,8,9,10. The formation of tubular nanostructure generally requires a layered or anisotropic crystal structure2,3,4. There are reports5,6,11 of nanotubes made from silica, alumina, silicon and metals that do not have a layered crystal structure; they are synthesized by using carbon nanotubes and porous membranes as templates, or by thin-film rolling. These nanotubes, however, are either amorphous, polycrystalline or exist only in ultrahigh vacuum8. The growth of single-crystal semiconductor hollow nanotubes would be advantageous in potential nanoscale electronics, optoelectronics and biochemical-sensing applications. Here we report an ‘epitaxial casting’ approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30–200 nm and wall thicknesses of 5–50 nm. Hexagonal ZnO nanowires were used as templates for the epitaxial overgrowth of thin GaN layers in a chemical vapour deposition system. The ZnO nanowire templates were subsequently removed by thermal reduction and evaporation, resulting in ordered arrays of GaN nanotubes on the substrates. This templating process should be applicable to many other semiconductor systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Arrays of ZnO nanowires and GaN nanotubes.
Figure 2: Structural characterization of GaN nanotubes.
Figure 3
Figure 4: Characterization of the interface between the GaN tube and the ZnO wire.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  ADS  CAS  Google Scholar 

  2. Tenne, R. & Zettl, A. K. Nanotubes from inorganic materials. Top. Appl. Phys. 80, 81–112 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Tenne, R. Inorganic nanoclusters with fullerene-like structure and nanotubes. Prog. Inorg. Chem. 50, 269–315 (2001)

    CAS  Google Scholar 

  4. Patzke, G. R., Krumeich, F. & Nesper, R. Oxidic nanotubes and nanorods—Anisotropic modules for a future nanotechnology. Angew. Chem. Int. Edn Engl. 41, 2446–2461 (2002)

    Article  CAS  Google Scholar 

  5. Martin, C. R. Nanomaterials—a membrane-based synthetic approach. Science 266, 1961–1965 (1994)

    Article  ADS  CAS  Google Scholar 

  6. Ajayan, P. M. et al. Carbon nanotubes as removable templates for metal-oxide nanocomposites and nanostructures. Nature 375, 564–566 (1996)

    Article  ADS  Google Scholar 

  7. Yang, S. M. et al. Formation of hollow helicoids in mesoporous silica: Supramolecular origami. Adv. Mater. 11, 1427–1430 (1999)

    Article  CAS  Google Scholar 

  8. Kondo, Y. & Takanayagi, K. Synthesis and characterization of helical multi-shell gold nanowires. Science 289, 606–608 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Li, Y. et al. Bismuth nanotubes. J. Am. Chem. Soc. 123, 9904–9905 (2001)

    Article  CAS  Google Scholar 

  10. Wu, Y. & Yang, P. Melting and welding semiconductor nanowires in nanotubes. Adv. Mater. 13, 520–523 (2001)

    Article  CAS  Google Scholar 

  11. Schmidt, O. G. & Eberl, K. Thin solid films roll up into nanotubes. Nature 410, 168 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Huang, M. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Caruso, R. A. & Antonietti, M. Sol-gel nanocoating: an approach to the preparation of structured materials. Chem. Mater. 13, 3272–3282 (2001)

    Article  CAS  Google Scholar 

  14. Hamdani, F. et al. Effect of buffer layer and substrate surface polarity on the growth by molecular beam epitaxy of GaN on ZnO. Appl. Phys. Lett. 71, 3111–3113 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Lee, S. M. et al. Stability and electronic structure of GaN nanotubes from density-functional calculations. Phys. Rev. B 60, 7788–7791 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Li, J. Y. et al. Synthesis of GaN nanotubes. J. Mater. Sci. Lett. 20, 1987–1988 (2001)

    Article  CAS  Google Scholar 

  17. Vayssieres, L., Keis, K., Hagfeldt, A. & Lindquist, S. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 13, 4395–4398 (2001)

    Article  CAS  Google Scholar 

  18. Hamdani, F. et al. Microstructure and optical properties of epitaxial GaN on ZnO (0001) grown by reactive molecular beam epitaxy. J. Appl. Phys. 83, 983–990 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Huang, Y., Duan, X., Cui, Y. & Lieber, C. M. Gallium nitride nanowire nanodevices. Nano Lett. 2, 101–104 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Kim, J. et al. Electrical transport properties of individual gallium nitride nanowires synthesized by chemical vapor deposition. Appl. Phys. Lett. 80, 3548–3550 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Schoening, M. & Poghossian, A. Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 127, 1137–1151 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Lauhon, L. J., Gudiksen, M. S., Wang, D. & Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57–61 (2002)

    Article  ADS  CAS  Google Scholar 

  23. He, R., Law, M., Fan, R., Kim, F. & Yang, P. Functional bimorph composite nanotapes. Nano Lett. 2, 1109–1112 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Center for Electron Microscopy for the use of their facilities. This work was supported by the Camille and Henry Dreyfus Foundation, the Research Corporation, the Hellman Family Faculty Foundation and the Beckman Foundation. J.G. thanks the National Science Foundation for Graduate Fellowship support. P.Y. is an Alfred P. Sloan Research Fellow. Work at the Lawrence Berkeley National Laboratory was supported by the Office of Science, Basic Energy Sciences, Division of Materials Science of the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peidong Yang.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldberger, J., He, R., Zhang, Y. et al. Single-crystal gallium nitride nanotubes. Nature 422, 599–602 (2003). https://doi.org/10.1038/nature01551

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01551

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing