Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

African vegetation controlled by tropical sea surface temperatures in the mid-Pleistocene period

Abstract

The dominant forcing factors for past large-scale changes in vegetation are widely debated. Changes in the distribution of C4 plants—adapted to warm, dry conditions and low atmospheric CO2 concentrations1—have been attributed to marked changes in environmental conditions, but the relative impacts of changes in aridity, temperature2,3 and CO2 concentration4,5 are not well understood. Here, we present a record of African C4 plant abundance between 1.2 and 0.45 million years ago, derived from compound-specific carbon isotope analyses of wind-transported terrigenous plant waxes. We find that large-scale changes in African vegetation are linked closely to sea surface temperatures in the tropical Atlantic Ocean. We conclude that, in the mid-Pleistocene, changes in atmospheric moisture content—driven by tropical sea surface temperature changes and the strength of the African monsoon—controlled aridity on the African continent, and hence large-scale vegetation changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modern distributions of plant wax concentrations and their vegetation signatures.
Figure 2: Present-day atmospheric circulation over Africa, vegetation zones and dust plumes.
Figure 3: Mid-Pleistocene changes of African vegetation, tropical Atlantic SST, eolian plant wax transport and global ice volume.

Similar content being viewed by others

References

  1. Collatz, G. J., Berry, J. A. & Clark, J. S. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past and future. Oecologia 114, 441–454 (1998)

    Article  ADS  Google Scholar 

  2. Pagani, M., Freeman, K. H. & Arthur, M. A. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285, 876–879 (1999)

    Article  CAS  Google Scholar 

  3. Huang, Y. et al. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science 293, 1647–1651 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Cerling, T. E., Wang, Y. & Quade, J. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361, 344–345 (1993)

    Article  ADS  Google Scholar 

  5. Kuypers, M. M. M., Pancost, R. D. & Sinninghe Damsté, J. S. A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times. Nature 399, 342–345 (1999)

    Article  ADS  CAS  Google Scholar 

  6. O'Leary, M. H. Carbon isotope fractionation in plants. Phytochemistry 20, 553–568 (1981)

    Article  CAS  Google Scholar 

  7. Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997)

    Article  ADS  Google Scholar 

  9. Eglinton, G. & Hamilton, R. J. Leaf epicuticular waxes. Science 156, 1322–1335 (1967)

    Article  ADS  CAS  Google Scholar 

  10. Schefuß, E., Ratmeyer, V., Stuut, J.-B. W., Jansen, J. H. F. & Sinninghe Damsté, J. S. Carbon isotope analysis of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic. Geochim. Cosmochim. Acta (in the press)

  11. Collister, J. W., Rieley, G., Stern, B., Eglinton, G. & Fry, B. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolism. Org. Geochem. 21, 619–627 (1994)

    Article  CAS  Google Scholar 

  12. Shackleton, N. J., Berger, A. & Peltier, W. R. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Trans. R. Soc. Edinb. Earth Sci. 81, 251–261 (1990)

    Article  Google Scholar 

  13. Shackleton, N. J. & Opdyke, N. O. Oxygen-isotope and paleomagnetic stratigraphy of Pacific core V28-239 late Pliocene to latest Pleistocene. Geol. Soc. Am. 145, 449–464 (1976)

    CAS  Google Scholar 

  14. Mudelsee, M. & Schulz, M. The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth Planet. Sci. Lett. 151, 117–123 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Raymo, M. E., Oppo, D. W. & Curry, W. The mid-Pleistocene climate transition: A deep sea carbon isotopic perspective. Paleoceanography 12, 546–559 (1997)

    Article  ADS  Google Scholar 

  16. deMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995)

    Article  ADS  CAS  Google Scholar 

  17. Wyputta, U. & Grieger, B. Comparison of eastern Atlantic atmospheric trajectories for present day and last glacial maximum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 146, 53–66 (1999)

    Article  Google Scholar 

  18. Prell, W. L. & Kutzbach, J. E. Monsoon variability over the past 150,000 years. J. Geophys. Res. 92, 8411–8425 (1987)

    Article  ADS  Google Scholar 

  19. McIntyre, A., Ruddiman, W. F., Karlin, K. & Mix, A. C. Surface water response of the equatorial Atlantic Ocean to orbital forcing. Paleoceanography 4, 19–55 (1989)

    Article  ADS  Google Scholar 

  20. Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991)

    Article  ADS  Google Scholar 

  21. Partridge, T. C., deMenocal, P. B., Lorentz, S. A., Paiker, M. J. & Vogel, J. C. Orbital forcing of climate over South Africa: A 200,000-year rainfall record from the Pretoria saltpan. Quat. Sci. Rev. 16, 1125–1133 (1997)

    Article  ADS  Google Scholar 

  22. Philander, S. G. H. & Pacanowski, R. C. A model of the seasonal cycle in the tropical Atlantic Ocean. J. Geophys. Res. 91, 14192–14206 (1986)

    Article  ADS  Google Scholar 

  23. Katz, E. J. & Garzoli, S. L. Response of the western equatorial Atlantic Ocean to an annual wind cycle. J. Mar. Res. 40, 307–327 (1982)

    Google Scholar 

  24. Dupont, L. M., Donner, B., Schneider, R. R. & Wefer, G. Mid-Pleistocene environmental change in tropical Africa began as early as 1.05 Ma. Geology 29, 195–198 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Ganopolski, A., Rahmstorf, S., Petoukhov, V. & Claussen, M. Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391, 351–356 (1998)

    Article  ADS  Google Scholar 

  26. Fontaine, B. & Bigot, S. West African rainfall deficits and sea surface temperature. Int. J. Climatol. 13, 271–285 (1993)

    Article  Google Scholar 

  27. Schneider, R. R., Müller, P. J. & Ruhland, G. Late Quaternary surface circulation in the east equatorial South Atlantic: Evidence from alkenone sea surface temperatures. Paleoceanography 10, 197–219 (1995)

    Article  ADS  Google Scholar 

  28. Sage, R. F. Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Plant Biol. 3, 202–213 (2001)

    Article  CAS  Google Scholar 

  29. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    Article  ADS  CAS  Google Scholar 

  30. Jansen, J. H. F. & Dupont, L. M. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 175 (ed. Wefer, G. et al.) (Ocean Drilling Program, College Station, Texas, 2001)

    Google Scholar 

Download references

Acknowledgements

We thank the Ocean Drilling Program for providing samples. The investigations were supported by the Research Council for Earth and Life Sciences with financial aid from the Netherlands Organisation for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enno Schefuß.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schefuß, E., Schouten, S., Jansen, J. et al. African vegetation controlled by tropical sea surface temperatures in the mid-Pleistocene period. Nature 422, 418–421 (2003). https://doi.org/10.1038/nature01500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing