Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A hidden pseudogap under the ‘dome’ of superconductivity in electron-doped high-temperature superconductors

Abstract

The ground state of superconductors is characterized by the long-range order of condensed Cooper pairs: this is the only order present in conventional superconductors. The high-transition-temperature (high-Tc) superconductors, in contrast, exhibit more complex phase behaviour, which might indicate the presence of other competing ground states. For example, the pseudogap1,2—a suppression of the accessible electronic states at the Fermi level in the normal state of high-Tc superconductors—has been interpreted as either a precursor to superconductivity3,4 or as tracer of a nearby ground state that can be separated from the superconducting state by a quantum critical point5,6. Here we report the existence of a second order parameter7 hidden within the superconducting phase of the underdoped (electron-doped) high-Tc superconductor Pr2-xCexCuO4-y and the newly synthesized electron-doped material La2-xCexCuO4-y (ref. 8). The existence of a pseudogap when superconductivity is suppressed excludes precursor superconductivity as its origin. Our observation is consistent with the presence of a (quantum) phase transition at T = 0, which may be a key to understanding high-Tc superconductivity. This supports the picture that the physics of high-Tc superconductors is determined by the interplay between competing and coexisting ground states.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified schematic phase diagram for hole-doped and electron-doped high-Tc superconductors (SC): left, electron-doped (La,Pr,Nd)2-xCexCuO4-y; right, hole-doped La2-xSrxCuO4-y.
Figure 2: Pseudogap in the magnetic field driven normal state and its doping dependence.
Figure 3: Temperature dependence of the pseudogap in high magnetic fields.
Figure 4: Phase diagram of the electron-doped high-Tc superconductor Pr2-xCexCuO4-y.

Similar content being viewed by others

References

  1. Tallon, J. L. & Loram, J. W. The doping dependence of T*—what is the real high-Tc phase diagram? Physica C 349, 53–68 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61–122 (1999)

    Article  ADS  CAS  Google Scholar 

  3. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995)

    Article  ADS  CAS  Google Scholar 

  4. Xu, Z. A., Ong, N. P., Wang, Y., Kakeshita, T. & Uchida, S. Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2-xSrxCuO4 . Nature 406, 486–488 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Varma, C. M. Pseudogap phase and the quantum-critical point in copper-oxide metals. Phys. Rev. Lett. 83, 3538–3541 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Sachdev, S. Quantum criticality: competing ground states in low dimensions. Science 288, 475–480 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001)

    Article  ADS  Google Scholar 

  8. Naito, M. & Hepp, M. Superconducting T-La2-xCexCuO4 films grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 39, L485–L487 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Kleefisch, S. et al. Possible pseudogap behavior of electron-doped high-temperature superconductors. Phys. Rev. B 63, R100507 (2001)

    Article  ADS  Google Scholar 

  10. Mannhart, J. et al. Generation of magnetic flux by single grain boundaries of YBa2Cu3O7-x . Phys. Rev. Lett. 77, 2782–2785 (1996)

    Article  ADS  CAS  Google Scholar 

  11. Onose, Y., Taguchi, Y., Ishizaka, K. & Tokura, Y. Doping dependence of pseudogap and related charge dynamics in Nd2-xCexCuO4 . Phys. Rev. Lett. 87, 217001 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Singley, E. J., Basov, D. N., Kurahashi, K., Uefuji, T. & Yamada, K. Electron dynamics in Nd1.85Ce0.15CuO4+δ: Evidence for the pseudogap state and unconventional c-axis response. Phys. Rev. B 64, 224503 (2001)

    Article  ADS  Google Scholar 

  13. Armitage, N. P. et al. Anomalous electronic structure and pseudogap effects in Nd1.85Ce0.15CuO4 . Phys. Rev. Lett. 87, 147003 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Renner, Ch., Revaz, B., Genoud, J.-Y., Kadowaki, K. & Fischer, Ø. Pseudogap precursor of the superconducting gap in under- and overdoped Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 80, 149–152 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Biswas, A. et al. Gapped tunneling spectra in the normal state of Pr2-xCexCuO4 . Phys. Rev. B 64, 104519 (2001)

    Article  ADS  Google Scholar 

  16. Gollnik, F. & Naito, M. Doping dependence of normal- and superconducting-state transport properties of Nd2-xCexCuO4+y thin films. Phys. Rev. B 58, 11734–11752 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Krasnov, V. M., Yurgens, A., Winkler, D., Delsing, P. & Claeson, T. Evidence for coexistence of the superconducting gap and the pseudogap in Bi-2212 from intrinsic tunneling spectroscopy. Phys. Rev. Lett. 84, 5860–5863 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Fournier, P. et al. Insulator-metal crossover near optimal doping in Pr2-xCexCuO4: anomalous normal-state low temperature resistivity. Phys. Rev. Lett. 81, 4720–4723 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Ando, Y., Boebinger, G. S., Passner, A., Kimura, T. & Kishio, K. Logarithmic divergence of both in-plane and out-of-plane normal-state resistivities of superconducting La2-xSrxCuO4 in the zero-temperature limit. Phys. Rev. Lett. 75, 4662–4665 (1995)

    Article  ADS  CAS  Google Scholar 

  20. Kaminski, A. et al. Spontaneous breaking of time-reversal symmetry in the pseudogap state of a high-Tc superconductor. Nature 416, 610–613 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Varma, C. M. Proposal for an experiment to test a theory of high-temperature superconductors. Phys. Rev. B 61, R3804–R3807 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Andergassen, S., Caprara, S., Di Castro, C. & Grilli, M. Anomalous isotopic effect near the charge-ordering quantum criticality. Phys. Rev. Lett. 87, 056401 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Manske, D., Dahm, T. & Bennemann, K.-H. Phase diagram of hole-doped high-Tc superconductors: Effects of Cooper-pair phase fluctuations within fluctuation-exchange theory. Phys. Rev. B 64, 144520 (2001)

    Article  ADS  Google Scholar 

  24. Lake, B. et al. Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor. Nature 415, 299–302 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Mook, H. A., Dai, P. & Dogan, F. Observation of magnetic moments in the superconducting state of YBa2Cu3O6.6 . Phys. Rev. B 64, 012502 (2001)

    Article  ADS  Google Scholar 

  26. Chandra, P., Coleman, P., Mydosh, J. A. & Tripathi, V. Hidden orbital order in the heavy fermion metal URu2Si2 . Nature 417, 831–834 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Nguyen, H. K. & Chakravarty, S. Effects of magnetic field on the d-density-wave order in the cuprates. Phys. Rev. B 65, R180519 (2002)

    Article  ADS  Google Scholar 

  28. Skinta, J. A., Kim, M.-S., Lemberger, T. R., Greibe, T. & Naito, M. Evidence for a transition in the pairing symmetry of the electron-doped cuprates La2-xCexCuO4-y and Pr2-xCexCuO4-y . Phys. Rev. Lett. 88, 207005 (2002)

    Article  ADS  Google Scholar 

  29. Alff, L. et al. Anomalous low temperature behavior of superconducting Nd1.85Ce0.15CuO4-y . Phys. Rev. Lett. 83, 2644–2647 (1999)

    Article  ADS  CAS  Google Scholar 

  30. Alff, L. et al. Observation of bound surface states in grain-boundary junctions of high-temperature superconductors. Phys. Rev. B 58, 11197–11200 (1998)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Alff.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alff, L., Krockenberger, Y., Welter, B. et al. A hidden pseudogap under the ‘dome’ of superconductivity in electron-doped high-temperature superconductors. Nature 422, 698–701 (2003). https://doi.org/10.1038/nature01488

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01488

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing