Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity

Abstract

Cell polarity is a fundamental property of all cells. In higher eukaryotes, the small GTPase Cdc42, acting through a Par6–atypical protein kinase C (aPKC) complex, is required to establish cellular asymmetry during epithelial morphogenesis, asymmetric cell division and directed cell migration1,2,3,4,5. However, little is known about what lies downstream of this complex. Here we show, through the use of primary rat astrocytes in a cell migration assay, that Par6–PKCζ interacts directly with and regulates glycogen synthase kinase-3β (GSK-3β) to promote polarization of the centrosome and to control the direction of cell protrusion. Cdc42-dependent phosphorylation of GSK-3β occurs specifically at the leading edge of migrating cells, and induces the interaction of adenomatous polyposis coli (Apc) protein with the plus ends of microtubules. The association of Apc with microtubules is essential for cell polarization. We conclude that Cdc42 regulates cell polarity through the spatial regulation of GSK-3β and Apc. This role for Apc may contribute to its tumour-suppressor activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glycogen synthase kinase-3β (GSK-3β) is phosphorylated downstream of Cdc42 and protein kinase Cζ (PKCζ) during astrocyte migration.
Figure 2: Spatially localized inhibition of GSK-3 is required to establish cell polarity.
Figure 3: β-Catenin is stabilized and localized at the leading edge of migrating cells.
Figure 4: The association of Apc with microtubules is regulated by the Cdc42–PKCζ–GSK-3 pathway.

Similar content being viewed by others

References

  1. Etienne-Manneville, S. & Hall, S. Rho GTPases in cell biology. Nature 420, 629–635 (2002)

    Article  ADS  CAS  Google Scholar 

  2. Ohno, S. Intercellular junctions and cellular polarity: the PAR–aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr. Opin. Cell Biol. 13, 641–648 (2001)

    Article  CAS  Google Scholar 

  3. Gotta, M., Abraham, M. C. & Ahringer, J. CDC-42 controls early cell polarity and spindle orientation in C. elegans. Curr. Biol. 11, 482–488 (2001)

    Article  CAS  Google Scholar 

  4. Kay, A. J. & Hunter, C. P. CDC-42 regulates PAR protein localization and function to control cellular and embryonic polarity in C. elegans. Curr. Biol. 11, 474–481 (2001)

    Article  CAS  Google Scholar 

  5. Etienne-Manneville, S. & Hall, A. Integrin-mediated Cdc42 activation controls cell polarity in migrating astrocytes through PKCζ. Cell 106, 489–498 (2001)

    Article  CAS  Google Scholar 

  6. Dominguez, I., Itoh, K. & Sokol, S. Y. Role of glycogen synthase kinase 3β as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc. Natl Acad. Sci. USA 92, 8498–8502 (1995)

    Article  ADS  CAS  Google Scholar 

  7. Emily-Fenouil, F., Ghiglione, C., Lhomond, G., Lepage, T. & Gache, C. GSK3β/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo. Development 125, 2489–2498 (1998)

    CAS  Google Scholar 

  8. He, X., Saint-Jeannet, J.-P., Woodgett, J. R., Varmus, H. E. & Dawid, I. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374, 617–622 (1995)

    Article  ADS  CAS  Google Scholar 

  9. Pierce, S. B. & Kimelman, D. Regulation of Spemann organizer formation by intracellular Xgsk-3. Development 121, 755–765 (1995)

    CAS  Google Scholar 

  10. Ferkey, D. M. & Kimelman, D. GSK-3: new thoughts on an old enzyme. Dev. Biol. 225, 471–479 (2000)

    Article  CAS  Google Scholar 

  11. Oriente, F. et al. Insulin receptor substrate-2 phosphorylation is necessary for protein kinase Cζ activation by insulin in L6hIR cells. J. Biol. Chem. 276, 37109–37119 (2001)

    Article  CAS  Google Scholar 

  12. Harwood, J. A. Regulation of GSK-3: a cellular multiprocessor. Cell 105, 821–824 (2001)

    Article  CAS  Google Scholar 

  13. Troussard, A. A., Tan, C., Yoganathan, T. N. & Dedhar, S. Cell–extracellular matrix interactions stimulate the AP-1 transcription factor in an integrin-linked kinase- and glycogen synthase kinase 3-dependent manner. Mol. Cell. Biol. 19, 7420–7427 (1999)

    Article  CAS  Google Scholar 

  14. Li, L. et al. Axin and Frat1 interact with Dvl and GSK, bridging Dvl to GSK in the Wnt-mediated regulation of LEF-1. EMBO J. 18, 4233–4240 (1999)

    Article  CAS  Google Scholar 

  15. Moon, R. T., Bowerman, B., Boutros, M. & Perrimon, N. The promise and perils of Wnt signaling through β-catenin. Science 296, 1644–1646 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000)

    CAS  Google Scholar 

  17. Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B. & Polakis, P. Regulation of intracellular β-catenin levels by the adenomatous polyposis coli (APC) tumour-suppressor protein. Proc. Natl Acad. Sci. USA 92, 3046–3050 (1995)

    Article  ADS  CAS  Google Scholar 

  18. Rubinfeld, B. et al. Binding of GSK3β to the APC-β-catenin complex and regulation of complex assembly. Science 272, 1023–1026 (1996)

    Article  ADS  CAS  Google Scholar 

  19. Bienz, M. The subcellular destinations of APC proteins. Nature Rev. Mol. Cell Biol. 3, 328–338 (2002)

    Article  CAS  Google Scholar 

  20. Mogensen, M. M., Tucker, J. B., Mackie, J. B., Prescott, A. R. & Nathke, I. S. The adenomatous polyposis coli protein unambiguously localizes to microtubule plus ends and is involved in establishing parrallel arrays of microtubule bundles in highly polarized epithelial cells. J. Cell Biol. 157, 1041–1048 (2002)

    Article  CAS  Google Scholar 

  21. Su, L. K. et al. APC binds to the novel protein EB1. Cancer Res. 55, 2972–2977 (1995)

    CAS  Google Scholar 

  22. Barth, A. I. M., Siemers, K. A. & Nelson, W. J. Dissecting interactions between EB1, microtubules and APC in cortical clusters at the plasma membrane. J. Cell Sci. 115, 1583–1590 (2002)

    CAS  PubMed Central  Google Scholar 

  23. Wagner, U., Utton, M., Gallo, J.-M. & Miller, C. C. J. Cellular phosphorylation of Tau by GSK-3β influences tau binding to microtubules and microtubule organisation. J. Cell Sci. 109, 1537–1543 (1996)

    CAS  Google Scholar 

  24. Lucas, F. R., Goold, R. G., Gordon-Weeks, P. R. & Salinas, P. C. Inhibition of GSK-3β leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. J. Cell Sci. 111, 1351–1361 (1998)

    CAS  Google Scholar 

  25. Nakamura, M., Zhou, X. Z. & Lu, K. P. Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization. Curr. Biol. 11, 1062–1067 (2001)

    Article  CAS  Google Scholar 

  26. Zumbrunn, J., Kinoshita, K., Hyman, A. A. & Nathke, I. S. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation. Curr. Biol. 11, 44–49 (2001)

    Article  CAS  Google Scholar 

  27. Palazzo, A. F. et al. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr. Biol. 11, 1536–1541 (2001)

    Article  CAS  Google Scholar 

  28. Berrueta, L., Tirnauer, J. S., Schuyler, S. C., Pellman, D. & Bierer, B. E. The APC-associated protein EB1 associates with components of the dynactin complex and cytoplasmic dynein intermediate chain. Curr. Biol. 9, 425–428 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Cancer Research UK programme grant, the Medical Research Council and by an EMBO Long-Term Fellowship (S.E.-M.). We thank S. Martin, V. M. Lee, R. Kypta, B. M. Gumbiner, P. Aspenström, I. Näthke and C. von Eichel-Streiber for plasmids and reagents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Hall.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etienne-Manneville, S., Hall, A. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421, 753–756 (2003). https://doi.org/10.1038/nature01423

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01423

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing