Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reaction path of protein farnesyltransferase at atomic resolution

Abstract

Protein farnesyltransferase (FTase) catalyses the attachment of a farnesyl lipid group to numerous essential signal transduction proteins, including members of the Ras superfamily1. The farnesylation of Ras oncoproteins, which are associated with 30% of human cancers, is essential for their transforming activity2. FTase inhibitors are currently in clinical trials for the treatment of cancer2,3,4. Here we present a complete series of structures representing the major steps along the reaction coordinate of this enzyme. From these observations can be deduced the determinants of substrate specificity and an unusual mechanism in which product release requires binding of substrate, analogous to classically processive enzymes. A structural model for the transition state consistent with previous mechanistic studies was also constructed. The processive nature of the reaction suggests the structural basis for the successive addition of two prenyl groups to Rab proteins by the homologous enzyme geranylgeranyltransferase type-II. Finally, known FTase inhibitors seem to differ in their mechanism of inhibiting the enzyme.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures along the FTase reaction path.
Figure 2: Comparison of reactant and product conformations and a proposed model for the transition state.
Figure 3: Farnesylated peptide product conformations at the active site (stereo).
Figure 4: A model for processive prenylation catalysed by GGTase-II (stereo).

Similar content being viewed by others

References

  1. Casey, P. J. & Seabra, M. C. Protein prenyltransferases. J. Biol. Chem. 271, 5289–5292 (1996)

    Article  CAS  Google Scholar 

  2. Adjei, A. A. Blocking oncogenic Ras signalling for cancer therapy. J. Natl Cancer Inst. 93, 1062–1074 (2001)

    Article  CAS  Google Scholar 

  3. Johnston, S. R. D. Farnesyl transferase inhibitors: a novel targeted therapy for cancer. Lancet Oncol. 2, 18–26 (2001)

    Article  CAS  Google Scholar 

  4. Karp, J. E. et al. Current status of clinical trials of farnesyltransferase inhibitors. Curr. Opin. Oncol. 13, 470–476 (2001)

    Article  CAS  Google Scholar 

  5. Huang, C., Hightower, K. E. & Fierke, C. A. Mechanistic studies of rat protein farnesyltransferase indicate an associative transition state. Biochemistry 39, 2593–2602 (2000)

    Article  CAS  Google Scholar 

  6. Park, H.-W., Boduluri, S. R., Moomaw, J. F., Casey, P. J. & Beese, L. S. Crystal structure of protein farnesyltransferase at 2.25 Å resolution. Science 275, 1800–1804 (1997)

    Article  CAS  Google Scholar 

  7. Long, S., Casey, P. J. & Beese, L. S. Co-crystal structure of protein farnesyltransferase with a farnesyl diphosphate substrate. Biochemistry 37, 9612–9618 (1998)

    Article  CAS  Google Scholar 

  8. Strickland, C. L. et al. Crystal structure of farnesyl protein transferase complexed with a CaaX peptide and farnesyl diphosphate analogue. Biochemistry 37, 16601–16611 (1998)

    Article  CAS  Google Scholar 

  9. Long, S. B., Casey, P. J. & Beese, L. S. The basis for K-Ras4B binding specificity to protein farnesyltransferase revealed by 2 Å resolution ternary complex structures. Struct. Fold. Des. 8, 209–222 (2000)

    Article  CAS  Google Scholar 

  10. Furfine, E. S., Leban, J. J., Landavazo, A., Moomaw, J. F. & Casey, P. J. Protein farnesyltransferase: Kinetics of farnesyl pyrophosphate binding and product release. Biochemistry 34, 6857–6862 (1995)

    Article  CAS  Google Scholar 

  11. Dolence, J. M., Rozema, D. B. & Poulter, C. D. Yeast protein farnesyltransferase. Site-directed mutagenesis of conserved residues in the beta-subunit. Biochemistry 36, 9246–9252 (1997)

    Article  CAS  Google Scholar 

  12. Kral, A. M. et al. Mutational analysis of conserved residues of the beta-subunit of human farnesyl:protein transferase. J. Biol. Chem. 272, 27319–27323 (1997)

    Article  CAS  Google Scholar 

  13. Wu, Z. et al. Farnesyl protein transferase: identification of K164α and Y300β as catalytic residues by mutagenesis and kinetic studies. Biochemistry 38, 11239–11249 (1999)

    Article  CAS  Google Scholar 

  14. Reiss, Y., Brown, M. S. & Goldstein, J. L. Divalent cation and prenyl pyrophosphate specificities of the protein farnesyltransferase from rat brain, a zinc metalloenzyme. J. Biol. Chem. 267, 6403–6408 (1992)

    CAS  PubMed  Google Scholar 

  15. Mathis, J. R. & Poulter, C. D. Yeast protein farnesyltransferase: a pre-steady-state kinetic analysis. Biochemistry 36, 6367–6376 (1997)

    Article  CAS  Google Scholar 

  16. Yokoyama, K., Zimmerman, K., Scholten, J. & Gelb, M. H. Differential prenyl pyrophosphate binding to mammalian protein geranylgeranyltransferase-I and protein farnesyltransferase and its consequence on the specificity of protein prenylation. J. Biol. Chem. 272, 3944–3952 (1997)

    Article  CAS  Google Scholar 

  17. Tschantz, W. R., Furfine, E. S. & Casey, P. J. Substrate binding is required for release of product from mammalian protein farnesyltransferase. J. Biol. Chem. 272, 9989–9993 (1997)

    Article  CAS  Google Scholar 

  18. Stradley, S. J., Rizo, J. & Gierasch, L. M. Conformation of a heptapeptide substrate bound to protein farnesyltransferase. Biochemistry 32, 12586–12590 (1993)

    Article  CAS  Google Scholar 

  19. Koblan, K. S. et al. NMR studies of novel inhibitors bound to farnesyl-protein transferase. Prot. Sci. 4, 681–688 (1995)

    Article  CAS  Google Scholar 

  20. Cate, J. H., Yusupov, M. M., Yusupova, G. Z., Earnest, T. N. & Noller, H. F. X-ray crystal structures of 70S ribosome functional complexes. Science 285, 2095–2104 (1999)

    Article  CAS  Google Scholar 

  21. Farnsworth, C. C., Seabra, M. C., Ericsson, L. H., Gelb, M. H. & Glomset, J. A. Rab geranylgeranyl transferase catalyzes the geranylgeranylation of adjacent cysteines in the small GTPases Rab1A, Rab3A, and Rab5A. Proc. Natl Acad. Sci. USA 91, 11963–11967 (1994)

    Article  ADS  CAS  Google Scholar 

  22. Novick, P. & Zerial, M. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9, 496–504 (1997)

    Article  CAS  Google Scholar 

  23. Thoma, N. H., Niculae, A., Goody, R. S. & Alexandrov, K. Double prenylation by RabGGTase can proceed without dissociation of the mono-prenylated intermediate. J. Biol. Chem. 276, 48631–48636 (2001)

    Article  CAS  Google Scholar 

  24. Zhang, H., Seabra, M. C. & Deisenhofer, J. Crystal structure of Rab geranylgeranyltransferase at 2.0 Å resolution. Struct. Fold. Des. 8, 241–251 (2000)

    Article  CAS  Google Scholar 

  25. Desnoyers, L. & Seabra, M. C. Single prenyl-binding site on protein prenyl transferases. Proc. Natl Acad. Sci. USA 95, 12266–12270 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Thoma, N. H. et al. Allosteric regulation of substrate binding and product release in geranylgeranyltransferase type II. Biochemistry 40, 268–274 (2001)

    Article  CAS  Google Scholar 

  27. Ashby, M. N. CaaX converting enzymes. Curr. Opin. Lipidol. 9, 99–102 (1998)

    Article  CAS  Google Scholar 

  28. Long, S. B., Hancock, P. J., Kral, A. M., Hellinga, H. W. & Beese, L. S. The crystal structure of human protein farnesyltransferase reveals the basis for inhibition by CaaX tetrapeptides and their mimetics. Proc. Natl Acad. Sci. USA 98, 12948–12953 (2001)

    Article  ADS  CAS  Google Scholar 

  29. Bell, I. M. G. et al. 3-Aminopyrrolidinone farnesyltransferase inhibitors: design of macrocyclic compounds with improved pharmacokinetics and excellent cell potency. J. Med. Chem. 45, 2388–2409 (2002)

    Article  CAS  Google Scholar 

  30. Strickland, C. L. et al. Tricyclic farnesyl protein transferase inhibitors: crystallographic and calorimetric studies of structure-activity relationships. J. Med. Chem. 42, 2125–2135 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. W. Hellinga for extensive discussions and K. L. Terry for assistance with crystallization and data collection. The work was supported by National Institutes of Health grants to L.S.B. and P.J.C., and an American Heart Association predoctoral fellowship to S.B.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena S. Beese.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, S., Casey, P. & Beese, L. Reaction path of protein farnesyltransferase at atomic resolution. Nature 419, 645–650 (2002). https://doi.org/10.1038/nature00986

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00986

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing