Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Marine aerosol formation from biogenic iodine emissions

Abstract

The formation of marine aerosols and cloud condensation nuclei—from which marine clouds originate—depends ultimately on the availability of new, nanometre-scale particles in the marine boundary layer. Because marine aerosols and clouds scatter incoming radiation and contribute a cooling effect to the Earth's radiation budget1, new particle production is important in climate regulation. It has been suggested that sulphuric acid—derived from the oxidation of dimethyl sulphide—is responsible for the production of marine aerosols and cloud condensation nuclei. It was accordingly proposed that algae producing dimethyl sulphide play a role in climate regulation2, but this has been difficult to prove and, consequently, the processes controlling marine particle formation remains largely undetermined3,4. Here, using smog chamber experiments under coastal atmospheric conditions, we demonstrate that new particles can form from condensable iodine-containing vapours, which are the photolysis products of biogenic iodocarbons emitted from marine algae. Moreover, we illustrate, using aerosol formation models, that concentrations of condensable iodine-containing vapours over the open ocean are sufficient to influence marine particle formation. We suggest therefore that marine iodocarbon emissions have a potentially significant effect on global radiative forcing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observed aerosol mass spectrum from chamber experiments as measured by the aerosol mass spectrometer.
Figure 2: Chemical pathway from CH2I2 to aerosol production, on the basis of the current state of knowledge of the gas-phase chemistry.
Figure 3: Model simulations of condensable vapour and aerosol concentrations in the marine boundary layer.
Figure 4: Initial (local time 06:00) and predicted final (local time 20:00) aerosol size distributions for CIV source rates (Q) of 0, 103, 5 × 103, 10 × 103 and 25 × 103 molecules cm-3 s-1.

Similar content being viewed by others

References

  1. Slingo, A. Sensitivity of the Earth's radiation budget to changes in low clouds. Nature 343, 49–51 (1990)

    Article  ADS  Google Scholar 

  2. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661 (1987)

    Article  ADS  CAS  Google Scholar 

  3. Katoshevski, D., Nenes, A. & Seinfeld, J. H. A study of processes that govern the maintenance of aerosols in the marine boundary layer. J. Aerosol. Sci. 30, 503–532 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Capaldo, K. P., Kasibhatla, P. & Pandis, S. N. Is aerosol production within the remote marine boundary layer sufficient to maintain observed concentrations? J. Geophys. Res. 104, 3483–3500 (1999)

    Article  ADS  CAS  Google Scholar 

  5. Korhonen, P. et al. Ternary nucleation of H2SO4, NH3, and H2O in the atmosphere. J. Geophys. Res. 104, 26349–26353 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Kulmala, M., Pirjola, L. & Mäkelä, J. M. Stable sulphate clusters as a source of new atmospheric particles. Nature 404, 66–69 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Pirjola, L., O'Dowd, C. D., Brooks, I. M. & Kulmala, M. Can new particle formation occur in the clean marine boundary layer? J. Geophys. Res. 105, 26531–26546 (2000)

    Article  ADS  CAS  Google Scholar 

  8. O'Dowd, C. D. et al. A dedicated study of new particle formation and fate in the coastal environment (PARFORCE): Overview of objectives and achievements. J. Geophys. Res. (in the press)

  9. Berresheim, H. et al. Gas-aerosol relationships of H2SO4, MSA and H: Observations in the coastal marine boundary layer at Mace Head, Ireland. J. Geophys. Res. (in the press)

  10. Väkevä, M., Hämeri, K. & Aalto, P. Hygroscopic properties of nucleation mode and Aitken mode particles during and outside nucleation bursts in west coast of Ireland. J. Geophys. Res. (in the press)

  11. Mäkelä, J. M. et al. Biogenic iodine emissions and identification of end-products in coastal ultrafine particles during nucleation bursts. J. Geophys. Res. (in the press)

  12. Cocker, D. R., Flagan, R. C. & Seinfeld, J. H. State-of-the-art chamber facility for studying atmospheric aerosol chemistry. Environ. Sci. Technol. 35, 2594–2601 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Carpenter, L. J. et al. Short-lived alkyl iodides and bromides at Mace Head, Ireland: Links to biogenic sources. J. Geophys. Res. 104, 1679–1689 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Laturnus, F., Giese, B., Wiencke, C. & Adams, F. Low molecular-weight organoiodine and organobromine compounds released by polar macroalgae—the influence of abiotic factors. Fresenius J. Anal. Chem. 368, 297–302 (2000)

    Article  CAS  Google Scholar 

  15. Giese, B., Laturnus, F., Adams, F. C. & Wiencke, C. Release of volatile iodinated C1-C4 hydrocarbons by marine macro from various climate zones. Environ. Sci. Technol. 33, 2432–2439 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Goodwin, K. D., North, W. J. & Lidstrom, M. E. Production of bromoform and dibromomethane by giant kelp: Factors affecting release and comparison to anthropogenic bromine sources. Limnol. Oceaanogr. 42, 1725–1734 (1997)

    Article  ADS  CAS  Google Scholar 

  17. Anache, S., Kamagata, Y., Kanagawa, T. & Kimuramatsu, Y. Bacteria mediate methylation of iodine in marine and terrestrial environments. Appl. Environ. Microbiol. 67, 2718–2722 (2001)

    Article  Google Scholar 

  18. McFiggans, G. et al. A model study of iodine chemistry in the marine boundary layer. J. Geophys. Res. 105, 14371–14386 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Allan, B. J., Plane, J. M. C. & McFiggans, G. Observations of OIO in the remote marine boundary layer. Geophys. Res. Lett. 28, 1945–1948 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Dal Maso, M., Kulmala, M., Mäkelä, J. M., Aalto, P. & O'Dowd, C. D. Condensation and coagulation sinks and the formation of nucleation mode particles in coastal and boreal forest boundary layers. J. Geophys. Res. (in the press)

  21. Lushnikov, A. A. & Kulmala, M. Nucleation controlled formation and growth of disperse particles. Phys. Rev. Lett. 81, 5165–5168 (1998)

    Article  ADS  CAS  Google Scholar 

  22. Houghton, J. T. et al. Climate Change 2001 – The Scientific Basis (Cambridge Univ. Press, Cambridge, 2001)

    Google Scholar 

  23. Leck, C. & Bigg, E. K. Aerosol production over remote marine areas—A new route. Geophys. Res. Lett. 23, 3577–3580 (1999)

    Article  ADS  Google Scholar 

  24. Murphy, D. M., Thomson, D. S. & Middlebrook, A. M. Bromine, iodine and chlorine in single aerosol particles at Cape Grim. Geophys. Res. Lett. 24, 3197–3200 (1997)

    Article  ADS  CAS  Google Scholar 

  25. Gäbler, H. E. & Heumann, K.-G. Determination of particulate iodine in aerosols from different regions by size fractioning impactor sampling and IDMS. Int. J. Anal. Chem. 50, 129–146 (1993)

    Article  Google Scholar 

  26. Wimschneider, A. & Heumann, G. Iodine: speciation in size fractioned atmospheric particles by isotope dilution mass spectrometry. Fresenius J. Anal. Chem. 353, 191–196 (1995)

    Article  CAS  Google Scholar 

  27. Baker, A. R., Thompson, D., Campos, M. L. A. M., Parry, S. J. & Jickells, T. D. Iodine concentration and availability in atmospheric aerosol. Atmos. Environ. 34, 4331–4336 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Huang, S., Arimoto, R. & Rahn, K. A. Sources and source variations for aerosol at Mace Head, Ireland. Atmos. Environ. 35, 1421–1437 (2001)

    Article  ADS  CAS  Google Scholar 

  29. Jayne, J. T. et al. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol. 33, 49–70 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Bloss, W. J., Rowley, D. M., Cox, R. A. & Jones, R. L. Kinetics and products of the IO self-reaction. J. Phys. Chem. A 105, 7840–7854 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the European Commission, the Finnish Academy, the US Department of Energy and the National Development Plan and Environmental Protection Agency, Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin D. O'Dowd.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Dowd, C., Jimenez, J., Bahreini, R. et al. Marine aerosol formation from biogenic iodine emissions. Nature 417, 632–636 (2002). https://doi.org/10.1038/nature00775

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00775

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing