Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epitaxial growth of hybrid nanostructures

Abstract

Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline showing key developments in the epitaxial growth of hybrid nanostructures.
Figure 2: Schematic illustration of typical architectures of epitaxial hybrid nanostructures.
Figure 3: Characterization of epitaxial hybrid nanostructures.
Figure 4: Schematic illustration of the advantages of epitaxial hybrid nanostructures in some applications.

Similar content being viewed by others

Hyunseok Kim, Celesta S. Chang, … Jeehwan Kim

References

  1. Costi, R., Saunders, A. E. & Banin, U. Colloidal hybrid nanostructures: a new type of functional materials. Angew. Chem. Int. Ed. 49, 4878–4897 (2010).

    Article  CAS  Google Scholar 

  2. Huang, X., Tan, C., Yin, Z. & Zhang, H. 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 26, 2185–2204 (2014).

    Article  CAS  Google Scholar 

  3. Tan, C. & Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713–2731 (2015).

    Article  CAS  Google Scholar 

  4. Sun, Y. Interfaced heterogeneous nanodimers. Natl Sci. Rev. 2, 329–348 (2015).

    Article  CAS  Google Scholar 

  5. Tan, C. & Zhang, H. Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 137, 12162–12174 (2015).

    Article  CAS  Google Scholar 

  6. Matthews, J. W. in Epitaxial growth (Academic, 1975).

    Google Scholar 

  7. Li, H., Li, Y., Aljarb, A., Shi, Y. & Li, L.-J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: growth mechanism, controllability, and scalability. Chem. Rev.http://dx.doi.org/10.1021/acs.chemrev.7b00212 (2017).

  8. Frankenheim, M. L. Über die Verbindung verschiedenartiger Krystalle [German]. Ann. Phys. 113, 516–522 (1836).

    Article  Google Scholar 

  9. Royer, L. Experimental research on parallel growth on mutual orientation of crystals of different species [French]. Bull. Soc. Fr. Min. 51, 7–159 (1928).

    CAS  Google Scholar 

  10. Kortan, A. R. et al. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc. 112, 1327–1332 (1990).

    Article  CAS  Google Scholar 

  11. Hoener, C. F. et al. Demonstration of a shell–core structure in layered CdSe–ZnSe small particles by X-ray photoelectron and Auger spectroscopies. J. Phys. Chem. 96, 3812–3811 (1992).

    Article  CAS  Google Scholar 

  12. Mews, A., Eychmiiller, A., Giersig, M., Schooss, D. & Weller, H. Preparation, characterization, and photophysics of the quantum dot quantum well system CdS/HgS/CdS. J. Phys. Chem. 98, 934–941 (1994).

    Article  CAS  Google Scholar 

  13. Mews, A., Kadavanich, A. V., Banin, U. & Alivisatos, A. P. Structural and spectroscopic investigations of CdS/HgS/CdS quantum-dot quantum wells. Phys. Rev. B 53, 242–245 (1996).

    Article  Google Scholar 

  14. Peng, X., Schlamp, M. C., Kadavanich, A. V. & Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019–7029 (1997). This study details the epitaxial growth, characterization and optical properties of CdSe–CdS core–shell quantum dots.

  15. Habas, S. E., Lee, H., Radmilovic, V., Somorjai, G. A. & Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 6, 692–697 (2007). Report on the epitaxial growth, characterization and electrocatalytic activity of noble metal core–shell polyhedral nanocrystals.

  16. Manna, L., Scher, E. C., Li, L.-S. & Alivisatos, A. P. Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. J. Am. Chem. Soc. 124, 7136–7145 (2002).

    Article  CAS  Google Scholar 

  17. Zhang, S. & Zeng, H. C. Solution-based epitaxial growth of magnetically responsive Cu@Ni nanowires. Chem. Mater. 22, 1282–1284 (2010).

    Article  CAS  Google Scholar 

  18. Lhuillier, E. et al. Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications. Acc. Chem. Res. 48, 22–30 (2015).

    Article  CAS  Google Scholar 

  19. Fan, Z. et al. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nat. Commun. 6, 6571 (2015).

    Article  CAS  Google Scholar 

  20. Milliron, D. J. et al. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190–195 (2004). Study on the epitaxial growth and characterization of well-defined branch-like semiconductor heterostructures.

    Article  CAS  Google Scholar 

  21. Regulacio, M. D. et al. One-pot synthesis of Cu1.94S–CdS and Cu1.94S–ZnxCd1– xS nanodisk heterostructures. J. Am. Chem. Soc. 133, 2052–2055 (2011).

    Article  CAS  Google Scholar 

  22. Huang, X. et al. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 4, 1444 (2013). Demonstration of the epitaxial growth of noble metal nanocrystals on solution-dispersed single-layer MoS2 nanosheets.

    Article  CAS  Google Scholar 

  23. Chen, K., Wan, X. & Xu, J. Epitaxial stitching and stacking growth of atomically thin transition-metal dichalcogenides (TMDCs) heterojunctions. Adv. Funct. Mater. 27, 1603884 (2017).

    Article  CAS  Google Scholar 

  24. Tan, C., Lai, Z. & Zhang, H. Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials. Adv. Mater. 29, 1701392 (2017).

    Article  CAS  Google Scholar 

  25. Wu, X.-J. et al. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. Nat. Chem. 8, 470–475 (2016). An example of the highly controlled epitaxial growth of high-density arrays of semiconductor nanorods on selected facets of 2D semiconductor nanoplates through seed engineering.

    Article  CAS  Google Scholar 

  26. Fan, Z. & Zhang, H. Template synthesis of noble metal nanocrystals with unusual crystal structures and their catalytic applications. Acc. Chem. Res. 49, 2841–2850 (2016).

    Article  CAS  Google Scholar 

  27. Dabbousi, B. O. et al. (CdSe)ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997).

    Article  CAS  Google Scholar 

  28. Cao, Y. & Banin, U. Growth and properties of semiconductor core/shell nanocrystals with InAs cores. J. Am. Chem. Soc. 122, 9692–9702 (2000).

    Article  CAS  Google Scholar 

  29. Talapin, D. V., Rogach, A. L., Kornowski, A., Haase, M. & Weller, H. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine–trioctylphosphine oxide–trioctylphospine mixture. Nano Lett. 1, 207–211 (2001).

    Article  CAS  Google Scholar 

  30. Malik, M. A., O’Brien, P. & Revaprasadu, N. A simple route to the synthesis of core/shell nanoparticles of chalcogenides. Chem. Mater. 14, 2004–2010 (2002).

    Article  CAS  Google Scholar 

  31. Cumberland, S. L. et al. Inorganic clusters as single-source precursors for preparation of CdSe, ZnSe, and CdSe/ZnS nanomaterials. Chem. Mater. 14, 1576–1584 (2002).

    Article  CAS  Google Scholar 

  32. Reiss, P., Bleuse, J. & Pron, A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett. 2, 781–784 (2002).

    Article  CAS  Google Scholar 

  33. Mekis, I., Talapin, D. V., Kornowski, A., Haase, M. & Weller, H. One-pot synthesis of highly luminescent CdSe/CdS core-shell nanocrystals via organometallic and “greener” chemical approaches. J. Phys. Chem. B 107, 7454–7462 (2003).

    Article  CAS  Google Scholar 

  34. Li, J. et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567–12575 (2003).

    Article  CAS  Google Scholar 

  35. Kim, S., Fisher, B., Eisler, H. & Bawendi, M. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 125, 11466–11467 (2003).

    Article  CAS  Google Scholar 

  36. Talapin, D. V. et al. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J. Phys. Chem. B 108, 18826–18831 (2004).

    Article  CAS  Google Scholar 

  37. Tsay, J. M., Pflughoefft, M., Bentolila, L. A. & Weiss, S. Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals. J. Am. Chem. Soc. 126, 1926–1927 (2004).

    Article  CAS  Google Scholar 

  38. Xie, R., Kolb, U., Li, J., Basché, T. & Mews, A. Synthesis and characterization of highly luminescent CdSe–core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J. Am. Chem. Soc. 127, 7480–7488 (2005).

    Article  CAS  Google Scholar 

  39. He, Y. et al. Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core–shell nanocrystals with high photoluminescence. J. Phys. Chem. B 110, 13370–13374 (2006).

    Article  CAS  Google Scholar 

  40. Pan, D., Wang, Q., Jiang, S., Ji, X. & An, L. Synthesis of extremely small CdSe and highly luminescent CdSe/CdS core–shell nanocrystals via a novel two-phase thermal approach. Adv. Mater. 17, 176–179 (2005).

    Article  Google Scholar 

  41. Aharoni, A., Mokari, T., Popov, I. & Banin, U. Synthesis of InAs/CdSe/ZnSe core/shell1/shell2 structures with bright and stable near-infrared fluorescence. J. Am. Chem. Soc. 128, 257–264 (2006).

    Article  CAS  Google Scholar 

  42. Zhang, W., Chen, G., Wang, J., Ye, B. & Zhong, X. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. Inorg. Chem. 48, 9723–9731 (2009).

    Article  CAS  Google Scholar 

  43. Fan, F. et al. Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J. Am. Chem. Soc. 130, 6949–6951 (2008).

    Article  CAS  Google Scholar 

  44. Lu, C.-L., Prasad, K. S., Wu, H.-L., Ho, J. A. & Huang, M. H. Au nanocube-directed fabrication of Au–Pd core–shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity. J. Am. Chem. Soc. 132, 14546–14553 (2010).

    Article  CAS  Google Scholar 

  45. Talapin, D. V. et al. Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett. 2, 1677–1681 (2003).

    Article  CAS  Google Scholar 

  46. Mokari, T. & Banin, U. Synthesis and properties of CdSe/ZnS core/shell nanorods. Chem. Mater. 15, 3955–3960 (2003).

    Article  CAS  Google Scholar 

  47. Grzelczak, M., Rodríguez-González, B., Pérez-Juste, J. & Liz-Marzán, L. M. Quasi-epitaxial growth of Ni nanoshells on Au nanorods. Adv. Mater. 19, 2262–2266 (2007).

    Article  CAS  Google Scholar 

  48. Sciacca, B. et al. Solution-phase epitaxial growth of quasi-monocrystalline cuprous oxide on metal nanowires. Nano Lett. 14, 5891–5898 (2014).

    Article  CAS  Google Scholar 

  49. Niu, Z. et al. Ultrathin epitaxial Cu@Au core–shell nanowires for stable transparent conductors. J. Am. Chem. Soc. 139, 7348–7354 (2017).

    Article  CAS  Google Scholar 

  50. Fan, Z. et al. Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 6, 7684 (2015).

    Article  CAS  Google Scholar 

  51. Fan, Z. et al. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 138, 1414–1419 (2016).

    Article  CAS  Google Scholar 

  52. Fan, Z. et al. Epitaxial growth of unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures on 4H Au nanoribbons. Chem. Sci. 8, 795–799 (2017). Study describing the synthesis of noble metal shells with an unusual 4H phase on 4H Au nanoribbons by epitaxial growth.

    Article  CAS  Google Scholar 

  53. Huang, X. et al. Polarity-free epitaxial growth of heterostructured ZnO/ZnS core/shell nanobelts. J. Phys. Chem. Lett. 4, 740–744 (2013).

    Article  CAS  Google Scholar 

  54. Aherne, D., Charles, D. E., Brennan-Fournet, M. E., Kelly, J. M. & Gun’ko, Y. K. Etching-resistant silver nanoprisms by epitaxial deposition of a protecting layer of gold at the edges. Langmuir 25, 10165–10173 (2009).

    Article  CAS  Google Scholar 

  55. Mahler, B., Nadal, B., Bouet, C., Patriarche, G. & Dubertret, B. Core/shell colloidal semiconductor nanoplatelets. J. Am. Chem. Soc. 134, 18591–18598 (2012).

    Article  CAS  Google Scholar 

  56. Tessier, M. D. et al. Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield. Nano Lett. 13, 3321–3328 (2013).

    Article  CAS  Google Scholar 

  57. Kunneman, L. T. et al. Bimolecular Auger recombination of electron–hole pairs in two-dimensional CdSe and CdSe/CdZnS core/shell nanoplatelets. J. Phys. Chem. Lett. 4, 3574–3578 (2013).

    Article  CAS  Google Scholar 

  58. Bouet, C. et al. Synthesis of zinc and lead chalcogenide core and core/shell nanoplatelets using sequential cation exchange reactions. Chem. Mater. 26, 3002–3008 (2014).

    Article  CAS  Google Scholar 

  59. Fan, Z. et al. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core–shell nanoplates from hexagonal-close-packed Au square sheets. Angew. Chem. Int. Ed. 54, 5672–5676 (2015).

    Article  CAS  Google Scholar 

  60. Enterkin, J. A., Poeppelmeier, K. R. & Marks, L. D. Oriented catalytic platinum nanoparticles on high surface area strontium titanate nanocuboids. Nano Lett. 11, 993–997 (2011).

    Article  CAS  Google Scholar 

  61. Sneed, B. T., Kuo, C.-H., Brodsky, C. N. & Tsung, C.-K. Iodide-mediated control of rhodium epitaxial growth on well-defined noble metal nanocrystals: synthesis, characterization, and structure-dependent catalytic properties. J. Am. Chem. Soc. 134, 18417–18426 (2012).

    Article  CAS  Google Scholar 

  62. Figuerola, A. et al. Epitaxial CdSe–Au nanocrystal heterostructures by thermal annealing. Nano Lett. 10, 3028–3036 (2010).

    Article  CAS  Google Scholar 

  63. Wang, L., Wei, H., Fan, Y., Gu, X. & Zhan, J. One-dimensional CdS/α-Fe2O3 and CdS/Fe3O4 heterostructures: epitaxial and nonepitaxial growth and photocatalytic activity. J. Phys. Chem. C 113, 14119–14125 (2009).

    Article  CAS  Google Scholar 

  64. Fang, Z. et al. Epitaxial growth of CdS nanoparticle on Bi2S3 nanowire and photocatalytic application of the heterostructure. J. Phys. Chem. C 115, 13968–13976 (2011).

    Article  CAS  Google Scholar 

  65. Schornbaum, J. et al. Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 24, 5798–5806 (2014).

    Article  CAS  Google Scholar 

  66. Zhuang, T., Fan, F., Gong, M. & Yu, S. Cu1.94S nanocrystal seed mediated solution-phase growth of unique Cu2S–PbS heteronanostructures. Chem. Commun. 48, 9762–9764 (2012).

    Article  CAS  Google Scholar 

  67. Han, S., Gong, M., Yao, H., Wang, Z. & Yu, S. One-pot controlled synthesis of hexagonal-prismatic Cu1.94S–ZnS, Cu1.94S–ZnS-Cu1.94S, and Cu1.94S–ZnS–Cu1.94S–ZnS–Cu1.94S heteronanostructures. Angew. Chem. Int. Ed. 51, 6365–6368 (2012).

    Article  CAS  Google Scholar 

  68. Tessier, M. D. et al. Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. Nano Lett. 14, 207–213 (2014).

    Article  CAS  Google Scholar 

  69. Pedetti, S., Ithurria, S., Heuclin, H., Patriarche, G. & Dubertret, B. Type-II CdSe/CdTe core/crown semiconductor nanoplatelets. J. Am. Chem. Soc. 136, 16430–16438 (2014).

    Article  CAS  Google Scholar 

  70. Wang, W. et al. Epitaxial growth of shape-controlled Bi2Te3–Te heterogeneous nanostructures. J. Am. Chem. Soc. 132, 17316–17324 (2010).

    Article  CAS  Google Scholar 

  71. Cheng, L. et al. T-shaped Bi2Te3–Te heteronanojunctions: epitaxial growth, structural modeling, and thermoelectric properties. J. Phys. Chem. C 117, 12458–12464 (2013).

    Article  CAS  Google Scholar 

  72. Sun, Y., Foley, J. J., Peng, S., Li, Z. & Gray, S. K. Interfaced metal heterodimers in the quantum size regime. Nano Lett. 13, 3958–3964 (2013).

    Article  CAS  Google Scholar 

  73. Patra, B. K. et al. Coincident site epitaxy at the junction of Au–Cu2ZnSnS4 heteronanostructures. Chem. Mater. 27, 650–657 (2015).

    Article  CAS  Google Scholar 

  74. Chen, J. et al. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 54, 1210–1214 (2015).

    Article  CAS  Google Scholar 

  75. Fan, F., Ding, Y., Liu, D., Tian, Z. & Wang, Z. L. Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal: ZnO nanorods on Ag nanocrystals. J. Am. Chem. Soc. 131, 12036–12037 (2009).

    Article  CAS  Google Scholar 

  76. Haldar, K. K., Pradhan, N. & Patra, A. Formation of heteroepitaxy in different shapes of Au–CdSe metal–semiconductor hybrid nanostructures. Small 9, 3424–3432 (2013).

    Article  CAS  Google Scholar 

  77. Zhou, W. et al. Controllable fabrication of high-quality 6-fold symmetry-branched CdS nanostructures with ZnS nanowires as templates. J. Phys. Chem. C 112, 9253–9260 (2008).

    Article  CAS  Google Scholar 

  78. Zhou, W. et al. Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 21, 2439–2445 (2011).

    Article  CAS  Google Scholar 

  79. An, H. et al. Unusual Rh nanocrystal morphology control by hetero-epitaxially growing Rh on Au@Pt nanowires with numerous vertical twinning boundaries. Nanoscale 7, 8309–8314 (2015).

    Article  CAS  Google Scholar 

  80. Lu, W., Ding, Y., Chen, Y., Wang, Z. L. & Fang, J. Bismuth telluride hexagonal nanoplatelets and their two-step epitaxial growth. J. Am. Chem. Soc. 127, 10112–10116 (2005).

    Article  CAS  Google Scholar 

  81. Chen, J. et al. Edge epitaxy of two-dimensional MoSe2 and MoS2 nanosheets on one-dimensional nanowires. J. Am. Chem. Soc. 139, 8653–8660 (2017).

    Article  CAS  Google Scholar 

  82. Cho, S. & Lee, K.-H. Solution-based epitaxial growth of ZnO nanoneedles on single-crystalline Zn plates. Cryst. Growth Des. 10, 1289–1295 (2010).

    Article  CAS  Google Scholar 

  83. Forticaux, A., Hacialioglu, S., DeGrave, J. P., Dziedzic, R. & Jin, S. Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes. ACS Nano 7, 8224–8232 (2013).

    Article  CAS  Google Scholar 

  84. Liu, L. et al. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343, 163–167 (2014). Study demonstrating the epitaxial growth of h-BN on graphene edges to form lateral heterostructures.

    Article  CAS  Google Scholar 

  85. Shin, H.-C. et al. Epitaxial growth of a single-crystal hybridized boron nitride and graphene layer on a wide-band gap semiconductor. J. Am. Chem. Soc. 137, 6897–6905 (2015).

    Article  CAS  Google Scholar 

  86. Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014). Study examining epitaxial growth of monolayer TMD lateral heterostructures.

    Article  CAS  Google Scholar 

  87. Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014). Demonstration of the epitaxial growth of monolayer TMD lateral and vertical heterostructures.

    Article  CAS  Google Scholar 

  88. Huang, C. et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

    Article  CAS  Google Scholar 

  89. Li, M.-Y. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015). Report on the epitaxial growth of monolayer TMD lateral p–n heterojunctions with atomically sharp interfaces.

    Article  CAS  Google Scholar 

  90. Chen, J. et al. Lateral epitaxy of atomically sharp WSe2/WS2 heterojunctions on silicon dioxide substrates. Chem. Mater. 28, 7194–7197 (2016).

    Article  CAS  Google Scholar 

  91. Yu, Y. et al. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett. 15, 486–491 (2015).

    Article  CAS  Google Scholar 

  92. Yoo, Y., Degregorio, Z. P. & Johns, J. E. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2 . J. Am. Chem. Soc. 137, 14281–14287 (2015).

    Article  CAS  Google Scholar 

  93. Zhang, X.-Q., Lin, C.-H., Tseng, Y.-W., Huang, K.-H. & Lee, Y.-H. Synthesis of lateral heterostructures of semiconducting atomic layers. Nano Lett. 15, 410–415 (2015).

    Article  CAS  Google Scholar 

  94. Chen, K. et al. Lateral built-in potential of monolayer MoS2–WS2 in-plane heterostructures by a shortcut growth strategy. Adv. Mater. 27, 6431–6437 (2015).

    Article  CAS  Google Scholar 

  95. Chen, K. et al. Electronic properties of MoS2–WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano 9, 9868–9876 (2015).

    Article  CAS  Google Scholar 

  96. Li, H. et al. Composition modulated two-dimensional semiconductor lateral heterostructures via layer-selected atomic substitution. ACS Nano 11, 961–967 (2017).

    Article  CAS  Google Scholar 

  97. Bogaert, K. et al. Diffusion-mediated synthesis of MoS2/WS2 lateral heterostructures. Nano Lett. 16, 5129–5134 (2016).

    Article  CAS  Google Scholar 

  98. Mahjouri-Samani, M. et al. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors. Nat. Commun. 6, 7749 (2015).

    Article  CAS  Google Scholar 

  99. Li, H. et al. Laterally stitched heterostructures of transition metal dichalcogenide: chemical vapor deposition growth on lithographically patterned area. ACS Nano 10, 10516–10523 (2016).

    Article  CAS  Google Scholar 

  100. Zhang, Z. et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017).

    Article  CAS  Google Scholar 

  101. Dang, W., Peng, H., Li, H., Wang, P. & Liu, Z. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 10, 2870–2876 (2010).

    Article  CAS  Google Scholar 

  102. Lin, M. et al. Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy. J. Am. Chem. Soc. 135, 13274–13277 (2013).

    Article  CAS  Google Scholar 

  103. Shi, Y. et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012).

    Article  CAS  Google Scholar 

  104. Lin, Y.-C. et al. Direct synthesis of van der Waals solids. ACS Nano 8, 3715–3723 (2014).

    Article  CAS  Google Scholar 

  105. Azizi, A. et al. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. ACS Nano 9, 4882–4890 (2015).

    Article  CAS  Google Scholar 

  106. Liu, X. et al. Rotationally commensurate growth of MoS2 on epitaxial graphene. ACS Nano 10, 1067–1075 (2016).

    Article  CAS  Google Scholar 

  107. Ago, H. et al. Visualization of grain structure and boundaries of polycrystalline graphene and two-dimensional materials by epitaxial growth of transition metal dichalcogenides. ACS Nano 10, 3233–3240 (2016).

    Article  CAS  Google Scholar 

  108. Xu, C. et al. Strongly coupled high-quality graphene/2D superconducting Mo2C vertical heterostructures with aligned orientation. ACS Nano 11, 5906–5914 (2017).

    Article  CAS  Google Scholar 

  109. Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013).

    Article  CAS  Google Scholar 

  110. Gao, T. et al. Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nat. Commun. 6, 6835 (2015).

    Article  CAS  Google Scholar 

  111. Zhang, C. et al. Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nat. Commun. 6, 6519 (2015).

    Article  CAS  Google Scholar 

  112. Li, Q. et al. Nickelocene-precursor-facilitated fast growth of graphene/h-BN vertical heterostructures and its applications in OLEDs. Adv. Mater. 29, 1701325 (2017).

    Article  CAS  Google Scholar 

  113. Fu, D. et al. Molecular beam epitaxy of highly-crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J. Am. Chem. Soc. 139, 9392–9400 (2017).

    Article  CAS  Google Scholar 

  114. Ionescu, R. et al. Two step growth phenomena of molybdenum disulfide–tungsten disulfide heterostructures. Chem. Commun. 51, 11213–11216 (2015).

    Article  CAS  Google Scholar 

  115. Woods, J. M. et al. One-step synthesis of MoS2/WS2 layered heterostructures and catalytic activity of defective transition metal dichalcogenide films. ACS Nano 10, 2004–2009 (2016).

    Article  CAS  Google Scholar 

  116. Shi, J. et al. Temperature-mediated selective growth of MoS2/WS2 and WS2/MoS2 vertical stacks on Au foils for direct photocatalytic applications. Adv. Mater. 28, 10664–10672 (2016).

    Article  CAS  Google Scholar 

  117. Tan, C. et al. Liquid-phase epitaxial growth of two-dimensional semiconductor hetero-nanostructures. Angew. Chem. Int. Ed. 54, 1841–1845 (2015).

    Article  CAS  Google Scholar 

  118. Talapin, D. V. et al. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7, 2951–2959 (2007).

    Article  CAS  Google Scholar 

  119. Xia, Y., Xia, X. & Peng, H.-C. Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J. Am. Chem. Soc. 137, 7947–7966 (2015).

    Article  CAS  Google Scholar 

  120. Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009).

    Article  CAS  Google Scholar 

  121. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse Cde (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  122. Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    Article  CAS  Google Scholar 

  123. Zeng, Z., Zheng, W. & Zheng, H. Visualization of colloidal nanocrystal formation and electrode–electrolyte interfaces in liquids using TEM. Acc. Chem. Res. 50, 1808–1817 (2017).

    Article  CAS  Google Scholar 

  124. Wang, S. et al. In situ atomic-scale studies of the formation of epitaxial Pt nanocrystals on monolayer molybdenum disulfide. ACS Nano 11, 9057–9067 (2017).

    Article  CAS  Google Scholar 

  125. Kratzer, P., Penev, E. & Scheffler, M. First-principles studies of kinetics in epitaxial growth of III–V semiconductors. Appl. Phys. A 75, 79–88 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Singapore through the Academic Research Fund (AcRF) Tier 2 (Grant Nos MOE2014-T2-2-093, MOE2015-T2-2-057, MOE2016-T2-2-103 and MOE2017-T2-1-162) and AcRF Tier 1 (Grant Nos 2016-T1-001-147, 2016-T1-002-051 and 2017-T1-001-150), and Nanyang Technological University, Singapore under a start-up grant (No. M4081296.070.500000). The authors acknowledge the Facility for Analysis, Characterization, Testing and Simulation, Nanyang Technological University, for use of their electron microscopy facilities. This research is supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and contributed to the discussion of content. H.Z. and C.T. wrote and edited the manuscript before submission.

Corresponding author

Correspondence to Hua Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C., Chen, J., Wu, XJ. et al. Epitaxial growth of hybrid nanostructures. Nat Rev Mater 3, 17089 (2018). https://doi.org/10.1038/natrevmats.2017.89

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2017.89

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing