Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Strain-controlled electrocatalysis on multimetallic nanomaterials

Abstract

Electrocatalysis is crucial for the development of clean and renewable energy technologies, which may reduce our reliance on fossil fuels. Multimetallic nanomaterials serve as state-of-the-art electrocatalysts as a consequence of their unique physico-chemical properties. One method of enhancing the electrocatalytic performance of multimetallic nanomaterials is to tune or control the surface strain of the nanomaterials, and tremendous progress has been made in this area in the past decade. In this Review, we summarize advances in the introduction, tuning and quantification of strain in multimetallic nanocrystals to achieve more efficient energy conversion by electrocatalysis. First, we introduce the concept of strain and its correlation with other key physico-chemical properties. Then, using the electrocatalytic reduction of oxygen as a model reaction, we discuss the underlying mechanisms behind the strain–adsorption–reactivity relationship based on combined classical theories and models. We describe how this knowledge can be harnessed to design multimetallic nanocrystals with optimized strain to increase the efficiency of oxygen reduction. In particular, we highlight the unexpectedly beneficial (and previously overlooked) role of tensile strain from multimetallic nanocrystals in improving electrocatalysis. We conclude by outlining the challenges and offering our perspectives on the research directions in this burgeoning field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A timeline of theoretical and experimental breakthroughs in strain-engineering electrocatalysis.
Figure 2: The generation, characterization and modulation of strain.
Figure 3: Theoretical and experimental correlation between strain and electrocatalysis.
Figure 4: Pt-based electrocatalysts with compressive strain.
Figure 5: Twinned Pt-based electrocatalysts with tensile strain.
Figure 6: PtPb nanoplate electrocatalysts with tensile strain.
Figure 7: Strain effect on Pd-based electrocatalysts.

Similar content being viewed by others

References

  1. Gates, B. The energy research imperative. Science 334, 877 (2011).

    Article  CAS  Google Scholar 

  2. Marban, G. & Valdes-Solis, T. Towards the hydrogen economy? Int. J. Hydrogen Energy 32, 1625–1637 (2007).

    Article  CAS  Google Scholar 

  3. Yang, Z. et al. Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011).

    Article  CAS  Google Scholar 

  4. Bockris, J. O. M. The hydrogen economy: its history. Int. J. Hydrogen Energy 38, 2579–2588 (2013).

    Article  CAS  Google Scholar 

  5. Lubitz, W. & Tumas, W. Hydrogen: an overview. Chem. Rev. 107, 3900–3903 (2007).

    Article  CAS  Google Scholar 

  6. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  CAS  Google Scholar 

  7. Groger, O., Gasteiger, H. A. & Suchsland, J.-P. Review—electromobility: batteries or fuel cells? J. Electrochem. Soc. 162, A2605–A2622 (2015).

    Article  CAS  Google Scholar 

  8. Winter, M. & Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4270 (2004).

    Article  CAS  Google Scholar 

  9. Lemmon, J. P. Energy: reimagine fuel cells. Nature 525, 447–449 (2015).

    Article  CAS  Google Scholar 

  10. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

    Article  CAS  Google Scholar 

  11. Gasteiger, H. A. & Markovic, N. M. Just a dream or future reality? Science 324, 48–49 (2009).

    Article  CAS  Google Scholar 

  12. Kongkanand, A. & Mathias, M. F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 7, 1127–1137 (2016).

    Article  CAS  Google Scholar 

  13. Stephens, I. E., Rossmeisl, J. & Chorkendorff, I. Toward sustainable fuel cells. Science 354, 1378–1379 (2016).

    Article  CAS  Google Scholar 

  14. Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005).

    Article  CAS  Google Scholar 

  15. Stephens, I. E. L., Bondarenko, A. S., Grønbjerg, U., Rossmeisl, J. & Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744–6762 (2012).

    Article  CAS  Google Scholar 

  16. He, T., Kreidler, E., Xiong, L., Luo, J. & Zhong, C. J. Alloy electrocatalysts. J. Electrochem. Soc. 153, A1637–A1643 (2006).

    Article  CAS  Google Scholar 

  17. Ferrando, R., Jellinek, J. & Johnston, R. L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008).

    Article  CAS  Google Scholar 

  18. Gilroy, K. D., Ruditskiy, A., Peng, H. C., Qin, D. & Xia, Y. Bimetallic nanocrystals: syntheses, properties, and applications. Chem. Rev. 116, 10414–11472 (2016).

    Article  CAS  Google Scholar 

  19. Adzic, R. R. et al. Platinum monolayer fuel cell electrocatalysts. Top. Catal. 46, 249–262 (2007).

    Article  CAS  Google Scholar 

  20. Adzic, R. R. Platinum monolayer electrocatalysts: tunable activity, stability, and self-healing properties. Electrocatalysis 3, 163–169 (2012).

    Article  CAS  Google Scholar 

  21. Gan, L., Cui, C., Rudi, S. & Strasser, P. Core–shell and nanoporous particle architectures and their effect on the activity and stability of Pt ORR electrocatalysts. Top. Catal. 57, 236–244 (2013).

    Article  CAS  Google Scholar 

  22. Yu, Z. et al. Comparison between dealloyed PtCo3 and PtCu3 cathode catalysts for proton exchange membrane fuel cells. J. Phys. Chem. C 116, 19877–19885 (2012).

    Article  CAS  Google Scholar 

  23. Stamenkovic, V. R., Mun, B. S., Mayrhofer, K. J., Ross, P. N. & Markovic, N. M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128, 8813–8819 (2006).

    Article  CAS  Google Scholar 

  24. Zhou, Z. Y., Tian, N., Li, J. T., Broadwell, I. & Sun, S. G. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 40, 4167–4185 (2011).

    Article  CAS  Google Scholar 

  25. Wang, Y. J. et al. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 115, 3433–3467 (2015).

    Article  CAS  Google Scholar 

  26. Shao, M., Chang, Q., Dodelet, J. P. & Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594–3657 (2016).

    Article  CAS  Google Scholar 

  27. Chen, Z., Waje, M., Li, W. & Yan, Y. Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. Int. Ed. 119, 4138–4141 (2007).

    Article  Google Scholar 

  28. Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    Article  CAS  Google Scholar 

  29. Lim, B. et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324, 1302–1305 (2009).

    Article  CAS  Google Scholar 

  30. Zhang, L. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349, 412–416 (2015).

    Article  CAS  Google Scholar 

  31. Guo, S. et al. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 3465–3468 (2013).

    Article  CAS  Google Scholar 

  32. Strasser, P. Catalysts by platonic design. Science 349, 379–380 (2015).

    Article  CAS  Google Scholar 

  33. Huang, X. Q. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015).

    Article  CAS  Google Scholar 

  34. Stamenkovic, V. R. et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007).

    Article  CAS  Google Scholar 

  35. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010). This study rationalizes the strain effect on promoting the activities of ORRs on Pt. This is possible because of the isolation of the strain effect from the ensemble and ligand effects in the dealloyed catalysts.

    Article  CAS  Google Scholar 

  36. Chen, M., Kumar, D., Yi, C. W. & Goodman, D. W. The promotional effect of gold in catalysis by palladium-gold. Science 310, 291–293 (2005).

    Article  CAS  Google Scholar 

  37. Zhang, J., Vukmirovic, M. B., Xu, Y., Mavrikakis, M. & Adzic, R. R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. 44, 2132–2135 (2005).

    Article  CAS  Google Scholar 

  38. Mistry, H., Varela, A. S., Kühl, S., Strasser, P. & Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 1, 16009 (2016).

    Article  CAS  Google Scholar 

  39. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    Article  CAS  Google Scholar 

  40. Snedeker, J. G. et al. Strain-rate dependent material properties of the porcine and human kidney capsule. J. Biomech. 38, 1011–1021 (2005).

    Article  CAS  Google Scholar 

  41. Wang, Y. et al. Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5, 3645–3650 (2011).

    Article  CAS  Google Scholar 

  42. Yang, S., Liu, F., Wu, C. & Yang, S. Tuning surface properties of low dimensional materials via strain engineering. Small 12, 4028–4047 (2016).

    Article  CAS  Google Scholar 

  43. Parks, V. J. & Durelli, A. J. On the definitions of strain and their use in large-strain analysis. Exp. Mech. 7, 279–280 (1967).

    Article  Google Scholar 

  44. Medasani, B. & Vasiliev, I. Computational study of the surface properties of aluminum nanoparticles. Surf. Sci. 603, 2042–2046 (2009).

    Article  CAS  Google Scholar 

  45. Gilbert, B., Huang, F., Zhang, H., Waychunas, G. A. & Banfield, J. F. Nanoparticles: strained and stiff. Science 305, 651–654 (2004).

    Article  CAS  Google Scholar 

  46. Wolfer, W. G. Elastic properties of surfaces on nanoparticles. Acta Mater. 59, 7736–7743 (2011).

    Article  CAS  Google Scholar 

  47. Solliard, C. & Flueli, M. Surface stress and size effect on the lattice parameter in small particles of gold and platinum. Surf. Sci. 156, 487–494 (1985).

    Article  CAS  Google Scholar 

  48. Potapenko, D. V., Li, Z., Kysar, J. W. & Osgood, R. M. Nanoscale strain engineering on the surface of a bulk TiO2 crystal. Nano Lett. 14, 6185–6189 (2014).

    Article  CAS  Google Scholar 

  49. Gsell, M., Jakob, P. & Menzel, D. Effect of substrate strain on adsorption. Science 280, 717–720 (1998). Direct evidence for the effect of strain on adsorption properties.

    Article  CAS  Google Scholar 

  50. Kato, H., Tottori, Y. & Sasaki, K. Four-point bending test of determining stress-strain curves asymmetric between tension and compression. Exp. Mech. 54, 489–492 (2013).

    Article  CAS  Google Scholar 

  51. Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2 . Nano Lett. 13, 5361–5366 (2013).

    Article  CAS  Google Scholar 

  52. Du, M., Cui, L., Cao, Y. & Bard, A. J. Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate. J. Am. Chem. Soc. 137, 7397–7403 (2015).

    Article  CAS  Google Scholar 

  53. Wang, H. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031–1036 (2016).

    Article  CAS  Google Scholar 

  54. Ohzuku, T. & Ueda, A. Solid-state redox reactions of LiCoO2 (R3_m) for 4 volt secondary lithium cells. J. Electrochem. Soc. 141, 2972–2977 (1994).

    Article  CAS  Google Scholar 

  55. Shao-Horn, Y., Croguennec, L., Delmas, C., Nelson, E. C. & O’Keefe, M. A. Atomic resolution of lithium ions in LiCoO2 . Nat. Mater. 2, 464–467 (2003).

    Article  CAS  Google Scholar 

  56. Strasser, P. & Kühl, S. Dealloyed Pt-based core–shell oxygen reduction electrocatalysts. Nano Energy 29, 166–177 (2016).

    Article  CAS  Google Scholar 

  57. Yang, H. Platinum-based electrocatalysts with core–shell nanostructures. Angew. Chem. Int. Ed. 50, 2674–2676 (2011).

    Article  CAS  Google Scholar 

  58. Guo, S., Zhang, S. & Sun, S. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 8526–8544 (2013).

    Article  CAS  Google Scholar 

  59. Sneed, B. T., Young, A. P. & Tsung, C. K. Building up strain in colloidal metal nanoparticle catalysts. Nanoscale 7, 12248–12265 (2015).

    Article  CAS  Google Scholar 

  60. Korte, C., Peters, A., Janek, J., Hesse, D. & Zakharov, N. Ionic conductivity and activation energy for oxygen ion transport in superlattices—the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3 . Phys. Chem. Chem. Phys. 10, 4623–4635 (2008).

    Article  CAS  Google Scholar 

  61. Zeng, J. et al. Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics. Angew. Chem. Int. Ed. 51, 2354–2358 (2012).

    Article  CAS  Google Scholar 

  62. Lim, B. et al. Facile synthesis of bimetallic nanoplates consisting of Pd cores and Pt shells through seeded epitaxial growth. Nano Lett. 8, 2535–2540 (2008).

    Article  CAS  Google Scholar 

  63. Jiang, M. et al. Epitaxial overgrowth of platinum on palladium nanocrystals. Nanoscale 2, 2406–2411 (2010).

    Article  CAS  Google Scholar 

  64. Wang, D., Zhao, P. & Li, Y. General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocatalysts. Sci. Rep. 1, 37–42 (2011).

    Article  CAS  Google Scholar 

  65. Srivastava, R., Mani, P., Hahn, N. & Strasser, P. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt–Cu–Co nanoparticles. Angew. Chem. Int. Ed. 46, 8988–8991 (2007).

    Article  CAS  Google Scholar 

  66. Hasché, F., Oezaslan, M. & Strasser, P. Activity, stability, and degradation mechanisms of dealloyed PtCu3 and PtCo3 nanoparticle fuel cell catalysts. ChemCatChem 3, 1805–1813 (2011).

    Google Scholar 

  67. Zhang, J. et al. Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J. Am. Chem. Soc. 127, 12480–12481 (2005).

    Article  CAS  Google Scholar 

  68. Zhou, W. P. et al. Improving electrocatalysts for O2 reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd3Fe(111) single-crystal alloy. J. Am. Chem. Soc. 131, 12755–12762 (2009).

    Article  CAS  Google Scholar 

  69. Zhang, J. et al. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 108, 10955–10964 (2004).

    Article  CAS  Google Scholar 

  70. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  CAS  Google Scholar 

  71. Stamenkovic, V., Schmidt, T. J., Ross, P. N. & Markovic, N. M. Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 106, 11970–11979 (2002).

    Article  CAS  Google Scholar 

  72. Leonardi, A., Leoni, M., Siboni, S. & Scardi, P. Common volume functions and diffraction line profiles of polyhedral domains. J. Appl. Crystallogr. 45, 1162–1172 (2012).

    Article  CAS  Google Scholar 

  73. Huang, W. J. et al. Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat. Mater. 7, 308–313 (2008). This study shows the dependence of surface strain on the coordination numbers and exposed facets of the nanoparticulate system.

    Article  CAS  Google Scholar 

  74. Wu, J. et al. Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem. Soc. Rev. 41, 8066–8074 (2012).

    Article  CAS  Google Scholar 

  75. Miao, J., Ohsuna, T., Terasaki, O., Hodgson, K. O. & O’Keefe, M. A. Atomic resolution three-dimensional electron diffraction microscopy. Phys. Rev. Lett. 89, 155502 (2002).

    Article  CAS  Google Scholar 

  76. Kim, S. et al. 3D strain measurement in electronic devices using through-focal annular dark-field imaging. Ultramicroscopy 146, 1–5 (2014).

    Article  CAS  Google Scholar 

  77. Miao, J., Ercius, P. & Billinge, S. J. Atomic electron tomography: 3D structures without crystals. Science 353, 1380–1388 (2016).

    Article  CAS  Google Scholar 

  78. Xu, R. et al. Three-dimensional coordinates of individual atoms in materials revealed by electron tomography. Nat. Mater. 14, 1099–1103 (2015).

    Article  CAS  Google Scholar 

  79. Goris, B. et al. Atomic-scale determination of surface facets in gold nanorods. Nat. Mater. 11, 930–935 (2012).

    Article  CAS  Google Scholar 

  80. Kibler, L. A., El-Aziz, A. M., Hoyer, R. & Kolb, D. M. Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem. Int. Ed. 44, 2080–2084 (2005).

    Article  CAS  Google Scholar 

  81. Koh, S. & Strasser, P. Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 129, 12624–12625 (2007).

    Article  CAS  Google Scholar 

  82. Muralidharan, N., Carter, R., Oakes, L., Cohn, A. P. & Pint, C. L. Strain engineering to modify the electrochemistry of energy storage electrodes. Sci. Rep. 6, 27542–27551 (2016).

    Article  CAS  Google Scholar 

  83. Markovic, N. M. Electrocatalysis: interfacing electrochemistry. Nat. Mater. 12, 101–102 (2013).

    Article  CAS  Google Scholar 

  84. Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2016).

    Article  CAS  Google Scholar 

  85. Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. 39, 163–184 (1972).

    Article  CAS  Google Scholar 

  86. Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

    Article  CAS  Google Scholar 

  87. Stamenkovic, V. et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 45, 2897–2901 (2006).

    Article  CAS  Google Scholar 

  88. Sheng, W., Myint, M., Chen, J. G. & Yan, Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6, 1509–1512 (2013).

    Article  CAS  Google Scholar 

  89. Jalan, V. & Taylor, E. J. Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. J. Electrochem. Soc. 130, 2299–2302 (1983). This study shows the correlation between the activities of the ORR with interatomic distances in Pt-based alloys.

    Article  CAS  Google Scholar 

  90. Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998). Using the d-band model, this work correlates surface strain with the adsorption properties and hence the reactivity of late transition metals.

    Article  Google Scholar 

  91. Hammer, B. & Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 343, 211–220 (1995).

    Article  CAS  Google Scholar 

  92. Schnur, S. & Groß, A. Strain and coordination effects in the adsorption properties of early transition metals: a density-functional theory study. Phys. Rev. B 81, 033402 (2010). Using the d-band model, this work correlates surface strain with the adsorption properties of ETMs.

    Article  CAS  Google Scholar 

  93. Jia, Q. et al. Activity descriptor identification for oxygen reduction on platinum-based bimetallic nanoparticles: in situ observation of the linear composition–strain–activity relationship. ACS Nano 9, 387–400 (2015).

    Article  CAS  Google Scholar 

  94. Moseley, P. & Curtin, W. A. Computational design of strain in core–shell nanoparticles for optimizing catalytic activity. Nano Lett. 15, 4089–4095 (2015).

    Article  CAS  Google Scholar 

  95. Temmel, S. E., Fabbri, E., Pergolesi, D., Lippert, T. & Schmidt, T. J. Investigating the role of strain toward the oxygen reduction activity on model thin film Pt catalysts. ACS Catal. 6, 7566–7576 (2016).

    Article  CAS  Google Scholar 

  96. Li, M. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016).

    Article  CAS  Google Scholar 

  97. Fortunelli, A. et al. The atomistic origin of the extraordinary oxygen reduction activity of Pt3Ni7 fuel cell catalysts. Chem. Sci. 6, 3915–3925 (2015).

    Article  CAS  Google Scholar 

  98. Debe, M. K. et al. Extraordinary oxygen reduction activity of Pt3Ni7 . J. Electrochem. Soc. 158, B910–B918 (2011).

    Article  CAS  Google Scholar 

  99. Yang, J., Chen, X., Yang, X. & Ying, J. Y. Stabilization and compressive strain effect of AuCu core on Pt shell for oxygen reduction reaction. Energy Environ. Sci. 5, 8976–8981 (2012).

    Article  CAS  Google Scholar 

  100. Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N. & Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001).

    Article  CAS  Google Scholar 

  101. Gan, L., Heggen, M., Rudi, S. & Strasser, P. Core–shell compositional fine structures of dealloyed PtxNi1 − x nanoparticles and their impact on oxygen reduction catalysis. Nano Lett. 12, 5423–5430 (2012).

    Article  CAS  Google Scholar 

  102. Rudi, S., Tuaev, X. & Strasser, P. Electrocatalytic oxygen reduction on dealloyed Pt1− xNix alloy nanoparticle electrocatalysts. Electrocatalysis 3, 265–273 (2012).

    Article  CAS  Google Scholar 

  103. Neyerlin, K. C., Srivastava, R., Yu, C. & Strasser, P. Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR). J. Power Sources 186, 261–267 (2009).

    Article  CAS  Google Scholar 

  104. Luo, M., Wei, L., Wang, F., Han, K. & Zhu, H. Gram-level synthesis of core–shell structured catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources 270, 34–41 (2014).

    Article  CAS  Google Scholar 

  105. Gan, L., Yu, R., Luo, J., Cheng, Z. & Zhu, J. Lattice strain distributions in individual dealloyed Pt–Fe catalyst nanoparticles. J. Phys. Chem. Lett. 3, 934–938 (2012). This study was the first to map strain distribution on a single dealloyed nanoparticle.

    Article  CAS  Google Scholar 

  106. Han, B. et al. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ. Sci. 8, 258–266 (2015). This work reports a strain-engineered catalyst that achieved the world-record activity in practical fuel cell operation.

    Article  CAS  Google Scholar 

  107. Gan, L., Heggen, M., O’Malley, R., Theobald, B. & Strasser, P. Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett. 13, 1131–1138 (2013).

    Article  CAS  Google Scholar 

  108. Wang, C. et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J. Am. Chem. Soc. 133, 14396–14403 (2011).

    Article  CAS  Google Scholar 

  109. Wang, D. et al. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013).

    Article  CAS  Google Scholar 

  110. Zhang, S. et al. Tuning nanoparticle structure and surface strain for catalysis optimization. J. Am. Chem. Soc. 136, 7734–7739 (2014).

    Article  CAS  Google Scholar 

  111. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009).

    Article  CAS  Google Scholar 

  112. Escudero-Escribano, M. et al. Pt5Gd as a highly active and stable catalyst for oxygen electroreduction. J. Am. Chem. Soc. 134, 16476–16479 (2012).

    Article  CAS  Google Scholar 

  113. Malacrida, P., Escudero-Escribano, M., Verdaguer-Casadevall, A., Stephens, I. E. L. & Chorkendorff, I. Enhanced activity and stability of Pt–La and Pt–Ce alloys for oxygen electroreduction: the elucidation of the active surface phase. J. Mater. Chem. A 2, 4234–4243 (2014).

    Article  CAS  Google Scholar 

  114. Johansson, T. P. et al. Pt skin versus Pt skeleton structures of Pt3Sc as electrocatalysts for oxygen reduction. Top. Catal. 57, 245–254 (2013).

    Article  CAS  Google Scholar 

  115. Velázquez-Palenzuela, A. et al. The enhanced activity of mass-selected PtxGd nanoparticles for oxygen electroreduction. J. Catal. 328, 297–307 (2015).

    Article  CAS  Google Scholar 

  116. Hernandez-Fernandez, P. et al. Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction. Nat. Chem. 6, 732–738 (2014).

    Article  CAS  Google Scholar 

  117. Johansson, T. P. et al. Towards the elucidation of the high oxygen electroreduction activity of PtxY: surface science and electrochemical studies of Y/Pt(111). Phys. Chem. Chem. Phys. 16, 13718–13725 (2014).

    Article  CAS  Google Scholar 

  118. Escudero-Escribano, M. et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016).

    Article  CAS  Google Scholar 

  119. Bian, T. et al. Epitaxial growth of twinned Au–Pt core–shell star-shaped decahedra as highly durable electrocatalysts. Nano Lett. 15, 7808–7815 (2015).

    Article  CAS  Google Scholar 

  120. Wu, J. et al. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 134, 11880–11883 (2012).

    Article  CAS  Google Scholar 

  121. Zhang, Z. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 28, 8712–8717 (2016).

    Article  CAS  Google Scholar 

  122. Wang, X. et al. Pt-based icosahedral nanocages: using a combination of {111} facets, twin defects, and ultrathin walls to greatly enhance their activity toward oxygen reduction. Nano Lett. 16, 1467–1471 (2016).

    Article  CAS  Google Scholar 

  123. Sun, X., Jiang, K., Zhang, N., Guo, S. & Huang, X. Crystalline control of {111} bounded Pt3Cu nanocrystals: multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 9, 7634–7640 (2015).

    Article  CAS  Google Scholar 

  124. Ghosh, T., Vukmirovic, M. B., DiSalvo, F. J. & Adzic, R. R. Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: potential for significantly improving properties. J. Am. Chem. Soc. 132, 906–907 (2010).

    Article  CAS  Google Scholar 

  125. Liu, F., Wu, C., Yang, G. & Yang, S. CO oxidation over strained Pt(100) surface: a DFT study. J. Phys. Chem. C 119, 15500–15505 (2015).

    Article  CAS  Google Scholar 

  126. Francis, M. F. & Curtin, W. A. Mechanical work makes important contributions to surface chemistry at steps. Nat. Commun. 6, 6261–6268 (2015).

    Article  CAS  Google Scholar 

  127. Bu, L. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354, 1410–1414 (2016). This study shows that the large tensile strain of the Pt(110) facet promotes oxygen reduction catalysis.

    Article  CAS  Google Scholar 

  128. Shao, M. Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J. Power Sources 196, 2433–2444 (2011).

    Article  CAS  Google Scholar 

  129. Shao, M., Liu, P., Zhang, J. & Adzic, R. Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction. J. Phys. Chem. B. 111, 6772–6775 (2007).

    Article  CAS  Google Scholar 

  130. Guo, S. et al. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles. J. Am. Chem. Soc. 136, 15026–15033 (2014).

    Article  CAS  Google Scholar 

  131. Jiang, K. et al. Ordered PdCu-based nanoparticles as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts. Angew. Chem. Int. Ed. 55, 9030–9035 (2016).

    Article  CAS  Google Scholar 

  132. Meku, E. et al. Electrocatalytic activity and stability of ordered intermetallic palladium-iron nanoparticles toward oxygen reduction reaction. J. Electrochem. Soc. 163, F132–F138 (2016).

    Article  CAS  Google Scholar 

  133. Jiang, G. et al. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction. ACS Nano 9, 11014–11022 (2015).

    Article  CAS  Google Scholar 

  134. Chen, Z. et al. Multiscale computational design of core/shell nanoparticles for oxygen reduction reaction. J. Phys. Chem. C 121, 1964–1973 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Grant No. 51671003), the China Postdoctoral Science Foundation (Grant No. 2017M610022), the National Basic Research Program of China (Grant No. 2016YFB0100201), the Open Project Foundation of the State Key Laboratory of Chemical Resource Engineering, and start-up support from Peking University and the Young Thousand Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Guo, S. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat Rev Mater 2, 17059 (2017). https://doi.org/10.1038/natrevmats.2017.59

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2017.59

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing