Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Particulate photocatalysts for overall water splitting

Abstract

The conversion of solar energy to chemical energy is a promising way of generating renewable energy. Hydrogen production by means of water splitting over semiconductor photocatalysts is a simple, cost-effective approach to large-scale solar hydrogen synthesis. Since the discovery of the Honda–Fujishima effect, considerable progress has been made in this field, and numerous photocatalytic materials and water-splitting systems have been developed. In this Review, we summarize existing water-splitting systems based on particulate photocatalysts, focusing on the main components: light-harvesting semiconductors and co-catalysts. The essential design principles of the materials employed for overall water-splitting systems based on one-step and two-step photoexcitation are also discussed, concentrating on three elementary processes: photoabsorption, charge transfer and surface catalytic reactions. Finally, we outline challenges and potential advances associated with solar water splitting by particulate photocatalysts for future commercial applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solar water splitting using a particulate photocatalyst.
Figure 2: Timeline showing the key developments in overall water splitting using particulate photocatalysts.
Figure 3: Kinetic control through the use of a co-catalyst and semiconductor in a one-step photoexcitation system.
Figure 4: Schematic energy diagrams for different types of photocatalytic overall water-splitting systems.
Figure 5: Kinetic control of the semiconductor and co-catalyst in a two-step photoexcitation system.
Figure 6: Relationship between the STH conversion efficiency and photon wavelengths for photocatalytic one-step overall water splitting.

Similar content being viewed by others

References

  1. Hisatomi, T. & Domen, K. Sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis. Faraday Discuss. 198, 11–35 (2016).

    Article  CAS  Google Scholar 

  2. Pinaud, B. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013).

    Article  CAS  Google Scholar 

  3. Fabian, D. et al. Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8, 2825–2850 (2015).

    Article  CAS  Google Scholar 

  4. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    Article  CAS  Google Scholar 

  5. Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016).

    Article  CAS  Google Scholar 

  6. Kibria, M. et al. Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays. Nat. Commun. 6, 6797 (2015).

    Article  CAS  Google Scholar 

  7. Yang, J., Wang, D., Han, H. & Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 1900–1909 (2013).

    Article  CAS  Google Scholar 

  8. Kato, H., Sasaki, Y., Shirakura, N. & Kudo, A. Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. J. Mater. Chem. A 1, 12327–12333 (2013).

    Article  CAS  Google Scholar 

  9. Hisatomi, T., Takanabe, K. & Domen, K. Photocatalytic water-splitting reaction from catalytic and kinetic perspectives. Catal. Lett. 145, 95–108 (2015).

    Article  CAS  Google Scholar 

  10. Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014).

    Article  CAS  Google Scholar 

  11. Zhang, F. & Li, C. in Solar to Chemical Energy Conversion: Theory and Application (eds Sugiyama, M., Fujii, K. & Nakamura, S. ) 299–317 (Springer, 2016).

    Book  Google Scholar 

  12. Domen, K., Naito, S., Soma, M., Onishi, T. & Tamaru, K. Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst. J. Chem. Soc. Chem. Commun. 543–544 (1980).

  13. Wagner, F. & Somorjai, G. Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals. J. Am. Chem. Soc. 102, 5494–5502 (1980).

    Article  CAS  Google Scholar 

  14. Kawai, T. & Sakata, T. Photocatalytic decomposition of gaseous water over TiO2 and TiO2–RuO2 surfaces. Chem. Phys. Lett. 72, 87–89 (1980).

    Article  CAS  Google Scholar 

  15. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). First report of PEC water splitting on a semiconductor photoelectrode.

    Article  CAS  Google Scholar 

  16. Chen, X., Shen, S., Guo, L. & Mao, S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010).

    Article  CAS  Google Scholar 

  17. Ikarashi, K. et al. Photocatalysis for water decomposition by RuO2-dispersed ZnGa2O4 with d10 configuration. J. Phys. Chem. B 106, 9048–9053 (2002).

    Article  CAS  Google Scholar 

  18. Sato, J., Saito, N., Nishiyama, H. & Inoue, Y. New photocatalyst group for water decomposition of RuO2-loaded p-block metal (In, Sn, and Sb) oxides with d10 configuration. J. Phys. Chem. B 105, 6061–6063 (2001).

    Article  CAS  Google Scholar 

  19. Kim, H., Hwang, D., Kim, J., Kim, Y. & Lee, J. Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem. Commun. 1999, 1077–1078 (1999).

    Article  Google Scholar 

  20. Inoue, Y., Niiyama, T., Asai, Y. & Sato, K. Stable photocatalytic activity of BaTi4O9 combined with ruthenium oxide for decomposition of water. J. Chem. Soc. Chem. Commun. 1992, 579–580 (1992).

    Article  Google Scholar 

  21. Kudo, A. et al. Photocatalytic decomposition of water over NiO–K4Nb6O17 catalyst. J. Catal. 111, 67–76 (1988).

    Article  CAS  Google Scholar 

  22. Inoue, Y. Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ. Sci. 2, 364–386 (2009).

    Article  CAS  Google Scholar 

  23. Osterloh, F. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20, 35–54 (2008).

    Article  CAS  Google Scholar 

  24. Lee, J. Photocatalytic water splitting under visible light with particulate semiconductor catalysts. Catal. Surv. Asia 9, 217–227 (2005).

    Article  CAS  Google Scholar 

  25. Sato, J. et al. Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration. J. Phys. Chem. B 108, 4369–4375 (2004).

    Article  CAS  Google Scholar 

  26. Youngblood, W., Lee, S., Maeda, K. & Mallouk, T. Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res. 42, 1966–1973 (2009).

    Article  CAS  Google Scholar 

  27. Williams, R. Becquerel photovoltaic effect in binary compounds. J. Chem. Phys. 32, 1505–1514 (1960).

    Article  CAS  Google Scholar 

  28. Katza, M. et al. Toward solar fuels: water splitting with sunlight and ‘rust’? Coord. Chem. Rev. 256, 2521–2529 (2012).

    Article  CAS  Google Scholar 

  29. Darwent, J. & Mills, A. Photo-oxidation of water sensitized by WO3 powder. J. Chem. Soc. Faraday Trans. 2 78, 359–367 (1982).

    Article  CAS  Google Scholar 

  30. Osterloh, F. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013).

    Article  CAS  Google Scholar 

  31. Townsend, T., Sabio, E., Browning, N. & Osterloh, F. Photocatalytic water oxidation with suspended alpha-Fe2O3 particles-effects of nanoscaling. Energy Environ. Sci. 4, 4270–4275 (2011).

    Article  CAS  Google Scholar 

  32. Zhang, G., Liu, G., Wang, L. & Irvine, J. Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 45, 5951–5984 (2016).

    Article  CAS  Google Scholar 

  33. Ong, W., Tan, L., Ng, Y., Yong, S. & Chai, S. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016).

    Article  CAS  Google Scholar 

  34. Li, X. et al. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485–2534 (2015).

    Article  CAS  Google Scholar 

  35. Chen, S. et al. A wide visible-light-responsive tunneled MgTa2O6 − xNx photocatalyst for water oxidation and reduction. Chem. Commun. 50, 14415–14417 (2014).

    Article  CAS  Google Scholar 

  36. Chen, S. et al. Nitrogen-doped layered oxide Sr5Ta4O15 − xNx for water reduction and oxidation under visible light irradiation. J. Mater. Chem. A 1, 5651–5659 (2013).

    Article  CAS  Google Scholar 

  37. Xu, X., Randorn, C., Efstathiou, P. & Irvine, J. A red metallic oxide photocatalyst. Nat. Mater. 11, 595–598 (2012).

    Article  CAS  Google Scholar 

  38. Abe, R. Development of a new system for photocatalytic water splitting into H2 and O2 under visible light irradiation. Bull. Chem. Soc. Jpn. 84, 1000–1030 (2011).

    Article  CAS  Google Scholar 

  39. Kudo, A. Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. Int. J. Hydrogen Energy 32, 2673–2678 (2007).

    Article  CAS  Google Scholar 

  40. Maeda, K. & Domen, K. New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 111, 7851–7861 (2007).

    Article  CAS  Google Scholar 

  41. Chen, S. et al. Synthesis, features, and applications of mesoporous titania with TiO2(B). Chin. J. Catal. 31, 605–614 (2010).

    Article  CAS  Google Scholar 

  42. Marchand, R., Brohan, L. & Tournoux, M. TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17 . Mater. Res. Bull. 15, 1129–1133 (1980).

    Article  CAS  Google Scholar 

  43. Baur, W. Atomabstände und Bindungswinkel im Brookit. TiO2 [German]. Acta Cryst. 14, 214–216 (1961).

    Article  CAS  Google Scholar 

  44. Cromer, D. & Herrington, K. The structures of anatase and rutile. J. Am. Chem. Soc. 77, 4708–4709 (1955).

    Article  CAS  Google Scholar 

  45. Maeda, K. Direct splitting of pure water into hydrogen and oxygen using rutile titania powder as a photocatalyst. Chem. Commun. 49, 8404–8406 (2013).

    Article  CAS  Google Scholar 

  46. Li, R. et al. Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases. Energy Environ. Sci. 8, 2377–2382 (2015).

    Article  CAS  Google Scholar 

  47. Wang, X. et al. Photocatalytic overall water splitting promoted by an α–β phase junction on Ga2O3 . Angew. Chem. Int. Ed. 51, 13089–13092 (2012).

    Article  CAS  Google Scholar 

  48. Zhang, J., Xu, Q., Feng, Z., Li, M. & Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2 . Angew. Chem. Int. Ed. 47, 1766–1769 (2008).

    Article  CAS  Google Scholar 

  49. Yuan, Y., Ruan, L., Barber, J., Joachim Loo, S. & Xue, C. Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy Environ. Sci. 7, 3934–3951 (2014).

    Article  CAS  Google Scholar 

  50. Jang, J., Kim, H. & Lee, J. Heterojunction semiconductors: a strategy to develop efficient photocatalytic materials for visible light water splitting. Catal. Today 185, 270–277 (2012).

    Article  CAS  Google Scholar 

  51. Oshima, T., Lu, D., Ishitani, O. & Maeda, K. Intercalation of highly dispersed metal nanoclusters into a layered metal oxide for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 54, 2698–2702 (2015).

    Article  CAS  Google Scholar 

  52. Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).

    Article  CAS  Google Scholar 

  53. Noda, Y., Lee, B., Domen, K. & Kondo, J. Synthesis of crystallized mesoporous tantalum oxide and its photocatalytic activity for overall water splitting under ultraviolet light irradiation. Chem. Mater. 20, 5361–5367 (2008).

    Article  CAS  Google Scholar 

  54. Mu, L. et al. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting. Energy Environ. Sci. 9, 2463–2469 (2016).

    Article  CAS  Google Scholar 

  55. Li, R. et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4 . Nat. Commun. 4, 1432 (2013).

    Article  CAS  Google Scholar 

  56. Kato, H., Asakura, K. & Kudo, A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 125, 3082–3089 (2003).

    Article  CAS  Google Scholar 

  57. Zhang, Q. et al. The dependence of photocatalytic activity on the selective and nonselective deposition of noble metal cocatalysts on the facets of rutile TiO2 . J. Catal. 337, 36–44 (2016).

    Article  CAS  Google Scholar 

  58. Li, R., Tao, X., Chen, R., Fan, F. & Li, C. Synergetic effect of dual co-catalysts on the activity of p-type Cu2O crystals with anisotropic facets. Chem. Eur. J. 21, 14337–14341 (2015).

    Article  CAS  Google Scholar 

  59. Zhu, J. et al. Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst. Angew. Chem. Int. Ed. 54, 9111–9114 (2015).

    Article  CAS  Google Scholar 

  60. Bai, S., Yin, W., Wang, L., Li, Z. & Xiong, Y. Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction. RSC Adv. 6, 57446–57463 (2016).

    Article  CAS  Google Scholar 

  61. Ma, Y. et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043 (2014).

    Article  CAS  Google Scholar 

  62. Wang, D. et al. Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: essential relations between electrocatalyst and photocatalyst. J. Phys. Chem. C 116, 5082–5089 (2012).

    Article  CAS  Google Scholar 

  63. Takata, T., Pan, C. & Domen, K. Recent progress in oxynitride photocatalysts for visible-light-driven water splitting. Sci. Technol. Adv. Mater. 16, 033506 (2015).

    Article  CAS  Google Scholar 

  64. Ham, Y. et al. Flux-mediated doping of SrTiO3 photocatalysts for efficient overall water splitting. J. Mater. Chem. A 4, 3027–3033 (2016).

    Article  CAS  Google Scholar 

  65. Sakata, Y., Hayashi, T., Yasunaga, R., Yanaga, N. & Imamura, H. Remarkably high apparent quantum yield of the overall photocatalytic H2O splitting achieved by utilizing Zn ion added Ga2O3 prepared using dilute CaCl2 solution. Chem. Commun. 51, 12935–12938 (2015).

    Article  CAS  Google Scholar 

  66. Takata, T., Pan, C., Nakabayashi, M., Shibata, N. & Domen, K. Fabrication of a core-shell-type photocatalyst via photodeposition of group IV and V transition metal oxyhydroxides: an effective surface modification method for overall water splitting. J. Am. Chem. Soc. 137, 9627–9634 (2015). This study reports a new surface-coating method to ensure the OWS process on various semiconductors.

    Article  CAS  Google Scholar 

  67. Maeda, K. et al. Photocatalyst releasing hydrogen from water. Nature 440, 295 (2006).

    Article  CAS  Google Scholar 

  68. Pan, C. et al. A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. Angew. Chem. Int. Ed. 54, 2955–2959 (2015).

    Article  CAS  Google Scholar 

  69. Maeda, K. et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 127, 8286–8287 (2005). First report of visible-light-driven photocatalytic OWS by a particulate photocatalyst via one-step photoexcitation.

    Article  CAS  Google Scholar 

  70. Pan, C. et al. Band engineering of perovskite-type transition metal oxynitrides for photocatalytic overall water splitting. J. Mater. Chem. A 4, 4544–4552 (2016).

    Article  CAS  Google Scholar 

  71. Maeda, K. et al. Overall water splitting on (Ga1 − xZnx)(N1 − xOx) solid solution photocatalyst: relationship between physical properties and photocatalytic activity. J. Phys. Chem. B 109, 20504–20510 (2005).

    Article  CAS  Google Scholar 

  72. Xu, J., Pan, C., Takata, T. & Domen, K. Photocatalytic overall water splitting on the perovskite-type transition metal oxynitride CaTaO2N under visible light irradiation. Chem. Commun. 51, 7191–7194 (2015).

    Article  CAS  Google Scholar 

  73. Takata, T., Pan, C. & Domen, K. Design and development of oxynitride photocatalysts for overall water splitting under visible light irradiation. ChemElectroChem 3, 31–37 (2016).

    Article  CAS  Google Scholar 

  74. Konta, R., Ishii, T., Kato, H. & Kudo, A. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J. Phys. Chem. B 108, 8992–8995 (2004).

    Article  CAS  Google Scholar 

  75. Asai, R. et al. A visible light responsive rhodium and antimony-codoped SrTiO3 powdered photocatalyst loaded with an IrO2 cocatalyst for solar water splitting. Chem. Commun. 50, 2543–2546 (2014).

    Article  CAS  Google Scholar 

  76. Sasaki, Y., Nemoto, H., Saito, K. & Kudo, A. Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J. Phys. Chem. C 113, 17536–17542 (2009). First report of the all-solid-state two-step OWS system.

    Article  CAS  Google Scholar 

  77. Maeda, K., Lu, D. & Domen, K. Direct water splitting into hydrogen and oxygen under visible light by using modified TaON photocatalysts with d0 electronic configuration. Chem. Eur. J. 19, 4986–4991 (2013).

    Article  CAS  Google Scholar 

  78. Liao, L. et al. Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnol. 9, 69–73 (2014).

    Article  CAS  Google Scholar 

  79. Kudo, A., Ueda, K., Kato, H. & Mikami, I. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal. Lett. 53, 229–230 (1998).

    Article  CAS  Google Scholar 

  80. Liu, H., Yuan, J., Shangguan, W. & Teraoka, Y. Visible-light-responding BiYWO6 solid solution for stoichiometric photocatalytic water splitting. J. Phys. Chem. C 112, 8521–8523 (2008).

    Article  CAS  Google Scholar 

  81. Jo, W. et al. Phase transition-induced band edge engineering of BiVO4 to split pure water under visible light. Proc. Natl Acad. Sci. USA 112, 13774–13778 (2015).

    Article  CAS  Google Scholar 

  82. Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009).

    Article  CAS  Google Scholar 

  83. Martin, D., Reardon, P., Moniz, S. & Tang, J. Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J. Am. Chem. Soc. 136, 12568–12571 (2014).

    Article  CAS  Google Scholar 

  84. Zhang, G., Lan, Z., Lin, L., Lin, S. & Wang, X. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 7, 3062–3066 (2016).

    Article  CAS  Google Scholar 

  85. Ohno, T., Bai, L., Hisatomi, T., Maeda, K. & Domen, K. Photocatalytic water splitting using modified GaN:ZnO solid solution under visible light: long-time operation and regeneration of activity. J. Am. Chem. Soc. 134, 8254–8259 (2012).

    Article  CAS  Google Scholar 

  86. Yang, J. et al. Roles of cocatalysts in Pt–PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. J. Catal. 290, 151–157 (2012).

    Article  CAS  Google Scholar 

  87. Lin, F. et al. Photocatalytic oxidation of thiophene on BiVO4 with dual cocatalysts Pt and RuO2 under visible light irradiation using molecular oxygen as oxidant. Energy Environ. Sci. 5, 6400–6406 (2012).

    Article  CAS  Google Scholar 

  88. Yan, H. et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. J. Catal. 266, 165–168 (2009).

    Article  CAS  Google Scholar 

  89. Yoshida, M. et al. Role and function of noble-metal/Cr-layer core/shell structure cocatalysts for photocatalytic overall water splitting studied by model electrodes. J. Phys. Chem. C 113, 10151–10157 (2009).

    Article  CAS  Google Scholar 

  90. Maeda, K. et al. Roles of Rh/Cr2O3 (core/shell) nanoparticles photodeposited on visible-light-responsive (Ga1 − xZnx)(N1 − xOx) solid solutions in photocatalytic overall water splitting. J. Phys. Chem. C 111, 7554–7560 (2007).

    Article  CAS  Google Scholar 

  91. Garcia-Esparza, A. et al. An oxygen-insensitive hydrogen evolution catalyst coated by a molybdenum-based layer for overall water splitting. Angew. Chem. Int. Ed. 56, 5780–5784 (2017).

    Article  CAS  Google Scholar 

  92. Yoshida, M., Maeda, K., Lu, D., Kubota, J. & Domen, K. Lanthanoid oxide layers on rhodium-loaded (Ga1 − xZnx)(N1 − xOx) photocatalyst as a modifier for overall water splitting under visible-light irradiation. J. Phys. Chem. C 117, 14000–14006 (2013).

    Article  CAS  Google Scholar 

  93. Berto, T. et al. Enabling overall water splitting on photocatalysts by CO-covered noble metal co-catalysts. J. Phys. Chem. Lett. 7, 4358–4362 (2016).

    Article  CAS  Google Scholar 

  94. Pan, C., Takata, T. & Domen, K. Overall water splitting on the transition-metal oxynitride photocatalyst LaMg1/3Ta2/3O2N over a large portion of the visible-light spectrum. Chem. Eur. J. 22, 1854–1862 (2016).

    Article  CAS  Google Scholar 

  95. Sato, S. & White, J. Photocatalytic water decomposition and water-gas shift reactions over NaOH-coated, platinized TiO2 . J. Catal. 69, 128–139 (1981).

    Article  CAS  Google Scholar 

  96. Maeda, K. Z-Scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 3, 1486–1503 (2013).

    Article  CAS  Google Scholar 

  97. Kudo, A. Z-Scheme photocatalyst systems for water splitting under visible light irradiation. MRS Bull. 36, 32–38 (2011).

    Article  CAS  Google Scholar 

  98. Ma, G. et al. Visible light-driven Z-scheme water splitting using oxysulfide H2 evolution photocatalysts. J. Phys. Chem. Lett. 7, 3892–3896 (2016).

    Article  CAS  Google Scholar 

  99. Fujito, H. et al. Layered perovskite oxychloride Bi4NbO8Cl: a stable visible light responsive photocatalyst for water splitting. J. Am. Chem. Soc. 138, 2082–2085 (2016).

    Article  CAS  Google Scholar 

  100. Iwashina, K., Iwase, A., Ng, Y., Amal, R. & Kudo, A. Z-Schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. J. Am. Chem. Soc. 137, 604–607 (2015).

    Article  CAS  Google Scholar 

  101. Abe, R., Shinmei, K., Koumura, N., Hara, K. & Ohtani, B. Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator. J. Am. Chem. Soc. 135, 16872–16884 (2013).

    Article  CAS  Google Scholar 

  102. Tsuji, K., Tomita, O., Higashi, M. & Abe, R. Manganese-substituted polyoxometalate as an effective shuttle redox mediator in Z-scheme water splitting under visible light. ChemSusChem 9, 2201–2208 (2016).

    Article  CAS  Google Scholar 

  103. Bard, A. Photoelectrochemistry and heterogeneous photocatalysis at semiconductors. J. Photochem. 10, 59–75 (1979). Proposal of the Z-scheme model using particulate photocatalysts.

    Article  CAS  Google Scholar 

  104. Abe, R., Sayama, K., Domen, K. & Arakawa, H. A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3/I shuttle redox mediator. Chem. Phys. Lett. 344, 339–344 (2001). First report of the two-step OWS system.

    Article  CAS  Google Scholar 

  105. Qi, Y. et al. Achievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta3N5 as a H2-evolving photocatalyst. Chem. Sci. 8, 437–443 (2017).

    Article  CAS  Google Scholar 

  106. Kato, T. et al. Utilization of metal sulfide material of (CuGa)1 − xZn2xS2 solid solution with visible light response in photocatalytic and photoelectrochemical solar water splitting systems. J. Phys. Chem. Lett. 6, 1042–1047 (2015).

    Article  CAS  Google Scholar 

  107. Chen, S. et al. Efficient visible-light-driven Z-scheme overall water splitting using a MgTa2O6 − xNy/TaON heterostructure photocatalyst for H2 evolution. Angew. Chem. Int. Ed. 54, 8498–8501 (2015).

    Article  CAS  Google Scholar 

  108. Wang, W., Chen, J., Li, C. & Tian, W. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts. Nat. Commun. 5, 4647 (2014).

    Article  CAS  Google Scholar 

  109. Maeda, K., Higashi, M., Lu, D., Abe, R. & Domen, K. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 132, 5858–5868 (2010).

    Article  CAS  Google Scholar 

  110. Sayama, K., Mukasa, K., Abe, R., Abe, Y. & Arakawa, H. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3/I shuttle redox mediator under visible light irradiation. Chem. Commun. 2416–2417 (2001).

  111. Tabata, M. et al. Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light. Langmuir 26, 9161–9165 (2010).

    Article  CAS  Google Scholar 

  112. Wang, W., Li, Z., Chen, J. & Li, C. Crucial roles of electron–proton transport relay in the photosystem II–photocatalytic hybrid system for overall water splitting. J. Phys. Chem. C 121, 2605–2612 (2017).

    Article  CAS  Google Scholar 

  113. Kim, Y. et al. Hybrid Z-scheme using photosystem I and BiVO4 for hydrogen production. Adv. Funct. Mater. 25, 2369–2377 (2015).

    Article  CAS  Google Scholar 

  114. Kim, Y., Shin, S., Lee, J., Yang, K. & Nam, K. Hybrid system of semiconductor and photosynthetic protein. Nanotechnology 25, 342001–342020 (2014).

    Article  CAS  Google Scholar 

  115. Dau, H. & Zaharieva, I. Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc. Chem. Res. 42, 1861–1870 (2009).

    Article  CAS  Google Scholar 

  116. Brettel, K. Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim. Biophys. Acta 1318, 322–373 (1997).

    Article  CAS  Google Scholar 

  117. Sasaki, Y., Kato, H. & Kudo, A. [Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J. Am. Chem. Soc. 135, 5441–5449 (2013).

    Article  CAS  Google Scholar 

  118. Zhao, W., Maeda, K., Zhang, F., Hisatomi, T. & Domen, K. Effect of post-treatments on the photocatalytic activity of Sm2Ti2S2O5 for the hydrogen evolution reaction. Phys. Chem. Chem. Phys. 16, 12051–12056 (2014).

    Article  CAS  Google Scholar 

  119. Wu, X. et al. Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light. Appl. Catal. B 206, 501–509 (2017).

    Article  CAS  Google Scholar 

  120. Srinivasan, N., Sakai, E. & Miyauchi, M. Balanced excitation between two semiconductors in bulk heterojunction Z-scheme system for overall water splitting. ACS Catal. 6, 2197–2200 (2016).

    Article  CAS  Google Scholar 

  121. Kobayashi, R. et al. A heterojunction photocatalyst composed of zinc rhodium oxide, single crystal-derived bismuth vanadium oxide, and silver for overall pure-water splitting under visible light up to 740 nm. Phys. Chem. Chem. Phys. 18, 27754–27760 (2016).

    Article  CAS  Google Scholar 

  122. Wang, Q. et al. Z-Scheme water splitting using particulate semiconductors immobilized onto metal layers for efficient electron relay. J. Catal. 328, 308–315 (2015). First report of the photocatalyst sheet system for OWS.

    Article  CAS  Google Scholar 

  123. Wang, Q., Hisatomi, T., Ma, S., Li, Y. & Domen, K. Core/shell structured La- and Rh-codoped SrTiO3 as a hydrogen evolution photocatalyst in Z-scheme overall water splitting under visible light irradiation. Chem. Mater. 26, 4144–4150 (2014).

    Article  CAS  Google Scholar 

  124. Iwase, A., Ng, Y., Ishiguro, Y., Kudo, A. & Amal, R. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J. Am. Chem. Soc. 133, 11054–11057 (2011).

    Article  CAS  Google Scholar 

  125. Tada, H., Mitsui, T., Kiyonaga, T., Akita, T. & Tanaka, K. All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nat. Mater. 5, 782–786 (2006).

    Article  CAS  Google Scholar 

  126. Kim, H. et al. Photocatalytic ohmic layered nanocomposite for efficient utilization of visible light photons. Appl. Phys. Lett. 89, 064103 (2006).

    Article  CAS  Google Scholar 

  127. Wang, Q. et al. Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J. Am. Chem. Soc. 139, 1675–1683 (2017).

    Article  CAS  Google Scholar 

  128. Pan, Z. et al. Photoreduced graphene oxide as a conductive binder to improve the water splitting activity of photocatalyst sheets. Adv. Funct. Mater. 26, 7011–7019 (2016).

    Article  CAS  Google Scholar 

  129. Minegishi, T., Nishimura, N., Kubota, J. & Domen, K. Photoelectrochemical properties of LaTiO2N electrodes prepared by particle transfer for sunlight-driven water splitting. Chem. Sci. 4, 1120–1124 (2013).

    Article  CAS  Google Scholar 

  130. Wang, Q. et al. Particulate photocatalyst sheets for Z-scheme water splitting: advantages over powder suspension and photoelectrochemical systems and future challenges. Faraday Discuss. 197, 491–504 (2017).

    Article  CAS  Google Scholar 

  131. Li, Z. et al. Biomimetic electron transport via multiredox shuttles from photosystem II to a photoelectrochemical cell for solar water splitting. Energy Environ. Sci. 10, 765–771 (2017).

    Article  CAS  Google Scholar 

  132. Wang, W. et al. Spatially separated photosystem II and a silicon photoelectrochemical cell for overall water splitting: a natural–artificial photosynthetic hybrid. Angew. Chem. Int. Ed. 55, 9229–9233 (2016).

    Article  CAS  Google Scholar 

  133. Saupe, G., Mallouk, T., Kim, W. & Schmehl, R. Visible light photolysis of hydrogen iodide using sensitized layered metal oxide semiconductors: the role of surface chemical modification in controlling back electron transfer reactions. J. Phys. Chem. B 101, 2508–2513 (1997).

    Article  CAS  Google Scholar 

  134. Suzuki, H., Tomita, O., Higashi, M. & Abe, R. Design of nitrogen-doped layered tantalates for non-sacrificial and selective hydrogen evolution from water under visible light. J. Mater. Chem. A 4, 14444–14452 (2016).

    Article  CAS  Google Scholar 

  135. Abe, R., Sayama, K. & Arakawa, H. Significant effect of iodide addition on water splitting into H2 and O2 over Pt-loaded TiO2 photocatalyst: suppression of backward reaction. Chem. Phys. Lett. 371, 360–364 (2003).

    Article  CAS  Google Scholar 

  136. Zhang, Z. & Yates, J. Jr. Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112, 5520–5551 (2012).

    Article  CAS  Google Scholar 

  137. Wang, Z. et al. Moisture-assisted preparation of compact GaN:ZnO photoanode toward efficient photoelectrochemical water oxidation. Adv. Energy Mater. 6, 1600864 (2016).

    Article  CAS  Google Scholar 

  138. Zhong, M. et al. Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 137, 5053–5060 (2015).

    Article  CAS  Google Scholar 

  139. Ueda, K. et al. Photoelectrochemical oxidation of water using BaTaO2N photoanodes prepared by particle transfer method. J. Am. Chem. Soc. 137, 2227–2230 (2015).

    Article  CAS  Google Scholar 

  140. Liu, G. et al. A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. Angew. Chem. Int. Ed. 53, 7295–7299 (2014).

    Article  CAS  Google Scholar 

  141. Maeda, K. & Domen, K. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010).

    Article  CAS  Google Scholar 

  142. Ishikawa, A. et al. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤650 nm). J. Am. Chem. Soc. 124, 13547–13553 (2002).

    Article  CAS  Google Scholar 

  143. Tanaka, A., Teramura, K., Hosokawa, S., Kominami, H. & Tanaka, T. Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO2 photocatalyst with metal co-catalysts. Chem. Sci. 8, 2574–2580 (2017).

    Article  CAS  Google Scholar 

  144. Zhang, C. et al. A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis. Science 348, 690–693 (2015).

    Article  CAS  Google Scholar 

  145. Kanan, M. & Nocera, D. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1071–1075 (2008).

    Article  CAS  Google Scholar 

  146. Chen, S. et al. Magnesia interface nanolayer modification of Pt/Ta3N5 for promoted photocatalytic hydrogen production under visible light irradiation. J. Catal. 339, 77–83 (2016).

    Article  CAS  Google Scholar 

  147. Chen, S. et al. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible light irradiation. Angew. Chem. Int. Ed. 54, 3047–3051 (2015).

    Article  CAS  Google Scholar 

  148. Lu, J. et al. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 335, 1205–1208 (2012).

    Article  CAS  Google Scholar 

  149. Tang, J., Durrant, J. & Klug, D. Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J. Am. Chem. Soc. 130, 13885–13891 (2008).

    Article  CAS  Google Scholar 

  150. Hitoki, G. et al. Ta3N5 as a novel visible light-driven photocatalyst (λ <600 nm). Chem. Lett. 7, 736–737 (2002).

    Article  Google Scholar 

  151. Hitoki, G. et al. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ <500 nm). Chem. Commun. 16, 1698–1699 (2002).

    Article  Google Scholar 

  152. Sato, J. et al. RuO2-loaded β-Ge3N4 as a non-oxide photocatalyst for overall water splitting. J. Am. Chem. Soc. 127, 4150–4151 (2005).

    Article  CAS  Google Scholar 

  153. Maeda, K., Teramura, K. & Domen, K. Effect of post-calcination on photocatalytic activity of (Ga1 − xZnx)(N1 − xOx) solid solution for overall water splitting under visible light. J. Catal. 254, 198–204 (2008).

    Article  CAS  Google Scholar 

  154. Kibria, M. et al. One-step overall water splitting under visible light using multiband InGaN/GaN nanowire heterostructures. ACS Nano 7, 7886–7893 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the Artificial Photosynthesis Project of the New Energy and Industrial Technology Development Organization (NEDO) and also received funding from a Grant-in-Aid for Scientific Research (A) (No. 16H02417) and a Grant-in-Aid for Scientific Research (C) (No. 16K06862).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Domen.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Takata, T. & Domen, K. Particulate photocatalysts for overall water splitting. Nat Rev Mater 2, 17050 (2017). https://doi.org/10.1038/natrevmats.2017.50

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2017.50

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing