Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Materials discovery at high pressures

A Correction to this article was published on 07 March 2017

Abstract

Pressure is a fundamental thermodynamic variable that can be used to control the properties of materials, because it reduces interatomic distances and profoundly modifies electronic orbitals and bonding patterns. It is thus a versatile tool for the creation of exotic materials not accessible at ambient conditions. Recently developed static and dynamic high-pressure experimental techniques have led to the synthesis of many functional materials with excellent performance: for example, superconductors, superhard materials and high-energy-density materials. Some of these advances have been aided and accelerated by first-principles crystal-structure searching simulations. In this Review, we discuss recent progress in high-pressure materials discovery, placing particular emphasis on the record high-temperature superconductivity in hydrogen sulfide and on nanotwinned cubic boron nitride and diamond, the hardest known materials. Energy materials and exotic chemical materials obtained under high pressures are also discussed. The main drawback of high-pressure materials is their destabilization after pressure release; this problem and its possible solutions are surveyed in the conclusions, which also provide an outlook on the future developments in the field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Materials discovery through pressure-induced phase transitions.
Figure 2: Superconductive materials obtained at high pressures.
Figure 3: Light-element-based superhard materials.
Figure 4: Crystal structures of different phases of polymeric nitrogen.

Similar content being viewed by others

References

  1. Holzapfel, W. B. Physics of solids under strong compression. Rep. Prog. Phys. 59, 28–90 (1996).

    Google Scholar 

  2. Badding, J. V. High-pressure synthesis, characterization, and tuning of solid state materials. Annu. Rev. Mater. Sci. 28, 631–658 (1998).

    CAS  Google Scholar 

  3. Hemley, R. J. Effects of high pressure on molecules. Annu. Rev. Phys. Chem. 51, 763–800 (2000).

    CAS  Google Scholar 

  4. McMillan, P. F. New materials from high-pressure experiments. Nat. Mater. 1, 19–25 (2002).

    CAS  Google Scholar 

  5. McMillan, P. New materials from high pressure experiments: challenges and opportunities. High Press. Res. 23, 7–22 (2003).

    CAS  Google Scholar 

  6. McMillan, P. F. Chemistry at high pressure. Chem. Soc. Rev. 35, 855–857 (2006).

    CAS  Google Scholar 

  7. Grochala, W., Hoffmann, R., Feng, J. & Ashcroft, N. W. The chemical imagination at work in very tight places. Angew. Chem. Int. Ed. 46, 3620–3642 (2007).

    CAS  Google Scholar 

  8. McMillan, P. F. Condensed matter chemistry under ‘extreme’ high pressure-high temperature conditions. High Press. Res. 24, 67–86 (2004).

    CAS  Google Scholar 

  9. McMillan, P. F. Pressing on: the legacy of Percy W. Bridgman. Nat. Mater. 4, 715–718 (2005).

    CAS  Google Scholar 

  10. Hemley, R. J. Percy W. Bridgman's second century. High Press. Res. 30, 581–619 (2010).

    CAS  Google Scholar 

  11. Mujica, A., Rubio, A., Muñoz, A. & Needs, A. High-pressure phases of group-IV, III–V, and II–VI compounds. Rev. Mod. Phys. 75, 863 (2003).

    CAS  Google Scholar 

  12. Mao, H. K. & Hemley, R. J. Ultrahigh-pressure transitions in solid hydrogen. Rev. Mod. Phys. 66, 671–692 (1994).

    CAS  Google Scholar 

  13. Wentorf, R. H. Cubic form of boron nitride. J. Chem. Phys. 26, 956 (1957).

    CAS  Google Scholar 

  14. Buzea, C. & Robbie, K. Assembling the puzzle of superconducting elements: a review. Supercond. Sci. Technol. 18, R1–R8 (2005).

    CAS  Google Scholar 

  15. Huang, Q. et al. Nanotwinned diamond with unprecedented hardness and stability. Nature 510, 250–253 (2014).

    CAS  Google Scholar 

  16. Tian, Y. et al. Ultrahard nanotwinned cubic boron nitride. Nature 493, 385–388 (2013).

    CAS  Google Scholar 

  17. Eremets, M. I., Gavriliuk, A. G., Trojan, I. A., Dzivenko, D. A. & Boehler, R. Single-bonded cubic form of nitrogen. Nat. Mater. 3, 558–563 (2004).

    CAS  Google Scholar 

  18. Tomasino, D., Kim, M., Smith, J. & Yoo, C.-S. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity. Phys. Rev. Lett. 113, 205502 (2014).

    Google Scholar 

  19. Ma, Y., Oganov, A. R., Li, Z., Xie, Y. & Kotakoski, J. Novel high pressure structures of polymeric nitrogen. Phys. Rev. Lett. 102, 100–103 (2009).

    Google Scholar 

  20. Ma, Y. et al. Transparent dense sodium. Nature 458, 182–185 (2009).

    CAS  Google Scholar 

  21. Guillaume, C. L. et al. Cold melting and solid structures of dense lithium. Nat. Phys. 7, 211–214 (2011).

    CAS  Google Scholar 

  22. Marqués, M. et al. Crystal structures of dense lithium: a metal–semiconductor–metal transition. Phys. Rev. Lett. 106, 095502 (2011).

    Google Scholar 

  23. Zerr, A. et al. Recent advances in new hard high-pressure nitrides. Adv. Mater. 18, 2933–2948 (2006).

    CAS  Google Scholar 

  24. Horvath-Bordon, E. et al. High-pressure chemistry of nitride-based materials. Chem. Soc. Rev. 35, 987–1014 (2006).

    CAS  Google Scholar 

  25. Song, Y. New perspectives on potential hydrogen storage materials using high pressure. Phys. Chem. Chem. Phys. 15, 14524–14547 (2013).

    CAS  Google Scholar 

  26. Kuno, K. et al. Heating of Li in hydrogen: possible synthesis of LiHx . High Press. Res. 35, 16–21 (2015).

    CAS  Google Scholar 

  27. Pépin, C. M., Dewaele, A., Geneste, G., Loubeyre, P. & Mezouar, M. New iron hydrides under high pressure. Phys. Rev. Lett. 113, 265504 (2014).

    Google Scholar 

  28. Li, B. et al. Rhodium dihydride (RhH2) with high volumetric hydrogen density. Proc. Natl Acad. Sci. USA 108, 18618–18621 (2011).

    CAS  Google Scholar 

  29. Scheler, T. et al. High-pressure synthesis and characterization of iridium trihydride. Phys. Rev. Lett. 111, 215503 (2013).

    Google Scholar 

  30. Zhang, W. et al. Unexpected stable stoichiometries of sodium chlorides. Science 342, 1502–1505 (2013).

    CAS  Google Scholar 

  31. Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    CAS  Google Scholar 

  32. Strobel, T. A., Ganesh, P., Somayazulu, M., Kent, P. R. C. & Hemley, R. J. Novel cooperative interactions and structural ordering in H2S-H2. Phys. Rev. Lett. 107, 255503 (2011).

    Google Scholar 

  33. Duan, D. et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep. 4, 6968 (2014).

    CAS  Google Scholar 

  34. Einaga, M. et al. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 12, 835–838 (2016).

    CAS  Google Scholar 

  35. Li, Y. et al. Dissociation products and structures of solid H2S at strong compression. Phys. Rev. B 93, 020103(R) (2016).

    Google Scholar 

  36. Bernstein, N., Hellberg, C. S., Johannes, M. D., Mazin, I. I. & Mehl, M. J. What superconducts in sulfur hydrides under pressure and why. Phys. Rev. B 91, 060511(R) (2015).

    Google Scholar 

  37. Li, Y., Hao, J., Liu, H., Li, Y. & Ma, Y. The metallization and superconductivity of dense hydrogen sulfide. J. Chem. Phys. 140, 174712 (2014).

    Google Scholar 

  38. Mao, W. L. & Mao, H.-K. Hydrogen storage in molecular compounds. Proc. Natl Acad. Sci. USA 101, 708–710 (2004).

    CAS  Google Scholar 

  39. Li, X. et al. Stable Lithium Argon compounds under high pressure. Sci. Rep. 5, 16675 (2015).

    CAS  Google Scholar 

  40. Miao, M. S. et al. Anionic chemistry of noble gases: formation of Mg–NG (NG = Xe, Kr, Ar) compounds under pressure. J. Am. Chem. Soc. 137, 14122–14128 (2015).

    CAS  Google Scholar 

  41. Zhu, L., Liu, H., Pickard, C. J., Zou, G. & Ma, Y. Reactions of xenon with iron and nickel are predicted in the Earth's inner core. Nat. Chem. 6, 644–648 (2014).

    CAS  Google Scholar 

  42. Peng, F., Wang, Y., Wang, H., Zhang, Y. & Ma, Y. Stable xenon nitride at high pressures. Phys. Rev. B 92, 094104 (2015).

    Google Scholar 

  43. Miao, M. S. & Hoffmann, R. High pressure electrides: a predictive chemical and physical theory. Acc. Chem. Res. 47, 1311–1317 (2014).

    CAS  Google Scholar 

  44. Rueff, J.-P. et al. Pressure-induced high-spin to low-spin transition in FeS evidenced by X-ray emission spectroscopy. Phys. Rev. Lett. 82, 3284–3287 (1999).

    CAS  Google Scholar 

  45. Fukazawa, H. et al. Suppression of magnetic order by pressure in BaFe2As2. J. Phys. Soc. Japan 77, 105004 (2008).

    Google Scholar 

  46. Kusmartseva, A. F., Sipos, B., Berger, H., Forró, L. & Tutiš, E. Pressure induced superconductivity in pristine 1T-TiSe2. Phys. Rev. Lett. 103, 236401 (2009).

    CAS  Google Scholar 

  47. Wang, Y. & Ma, Y. Perspective: crystal structure prediction at high pressures. J. Chem. Phys. 140, 40901 (2014).

    Google Scholar 

  48. Jayaraman, A. Diamond anvil cell and high-pressure physical investigations. Rev. Mod. Phys. 55, 65–108 (1983).

    CAS  Google Scholar 

  49. McMahon, J. M., Morales, M. A., Pierleoni, C. & Ceperley, D. M. The properties of hydrogen and helium under extreme conditions. Rev. Mod. Phys. 84, 1607 (2012).

    CAS  Google Scholar 

  50. Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V. B. & Abakumov, A. M. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 3, 1163 (2012).

    Google Scholar 

  51. Dubrovinsky, L. et al. The most incompressible metal osmium at static pressures above 750 gigapascals. Nature 525, 226–229 (2015).

    CAS  Google Scholar 

  52. Dubrovinskaia, N. et al. Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv. 2, e1600341 (2016).

    Google Scholar 

  53. Zhai, S. & Ito, E. Recent advances of high-pressure generation in a multianvil apparatus using sintered diamond anvils. Geosci. Front. 2, 101–106 (2011).

    Google Scholar 

  54. Jeanloz, R. et al. Achieving high-density states through shock-wave loading of precompressed samples. Proc. Natl Acad. Sci. USA 104, 9172–9177 (2007).

    CAS  Google Scholar 

  55. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).

    CAS  Google Scholar 

  56. Goedecker, S. Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120, 9911 (2004).

    CAS  Google Scholar 

  57. Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

    CAS  Google Scholar 

  58. Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys. Condens. Matter 23, 053201 (2011).

    Google Scholar 

  59. Trimarchi, G. & Zunger, A. Global space-group optimization problem: finding the stablest crystal structure without constraints. Phys. Rev. B 75, 104113 (2007).

    Google Scholar 

  60. Lonie, D. C. & Zurek, E. XtalOpt: an open-source evolutionary algorithm for crystal structure prediction. Comput. Phys. Commun. 182, 372–387 (2011).

    CAS  Google Scholar 

  61. Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 244704 (2006).

    Google Scholar 

  62. Kolmogorov, A. N. et al. New superconducting and semiconducting Fe–B compounds predicted with an ab initio evolutionary search. Phys. Rev. Lett. 105, 217003 (2010).

    CAS  Google Scholar 

  63. Wang, Y., Lv, J., Zhu, L. & Ma, Y. CALYPSO: a method for crystal structure prediction. Comput. Phys. Commun. 183, 2063–2070 (2012).

    CAS  Google Scholar 

  64. Wang, Y., Lv, J., Zhu, L. & Ma, Y. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116 (2010).

    Google Scholar 

  65. Hamlin, J. J. Superconductivity in the metallic elements at high pressures. Phys. C Supercond. Appl. 514, 59–76 (2015).

    CAS  Google Scholar 

  66. Prakash, O., Kumar, A., Thamizhavel, A. & Ramakrishnan, S. Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure. Science 355, 52–55 (2017).

    CAS  Google Scholar 

  67. Chen, X.-J. et al. Enhancement of superconductivity by pressure-driven competition in electronic order. Nature 466, 950–953 (2010).

    CAS  Google Scholar 

  68. Monteverde, M. et al. High-pressure effects in fluorinated HgBa2Ca2Cu3O8+δ Europhys. Lett. 72, 458 (2005).

    CAS  Google Scholar 

  69. Chu, C. W. & Lorenz, B. High pressure studies on Fe-pnictide superconductors. Phys. C 469, 385–395 (2009).

    CAS  Google Scholar 

  70. Gao, L. et al. Superconductivity up to 164 K in HgBa2Cam – 1CumO2 m + 2 + δ (m=1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B Condens. Matter 50, 4260–4263 (1994).

    CAS  Google Scholar 

  71. Sun, L. et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides. Nature 483, 67–69 (2012).

    CAS  Google Scholar 

  72. Hegger, H. et al. Pressure-induced superconductivity in quasi-2D CeRhIn5. Phys. Rev. Lett. 84, 4986–4989 (2000).

    CAS  Google Scholar 

  73. Ekimov, E. A. et al. Superconductivity in diamond. Nature 428, 542–545 (2004).

    CAS  Google Scholar 

  74. Hemley, R. J., Struzhkin, V. V., Mao, H. & Timofeev, Y. A. Superconductivity at 10–17 K in compressed sulphur. Nature 390, 382–384 (1997).

    Google Scholar 

  75. Degtyareva, O. et al. Competition of charge-density waves and superconductivity in sulfur. Phys. Rev. Lett. 99, 155505 (2007).

    CAS  Google Scholar 

  76. Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748–1749 (1968).

    CAS  Google Scholar 

  77. Dalladay-Simpson, P., Howie, R. T. & Gregoryanz, E. Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature 529, 63–67 (2016).

    CAS  Google Scholar 

  78. Dias, R. P. & Silvera, I. F. Observation of the Wigner–Huntington transition to metallic hydrogen. Sciencehttp:\\dx.doi.org\10.1126/science.aal1579 (2017).

  79. Ashcroft, N. W. Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).

    CAS  Google Scholar 

  80. Feng, J. et al. Structures and potential superconductivity in SiH4 at high pressure: en route to ‘metallic hydrogen’. Phys. Rev. Lett. 96, 017006 (2006).

    Google Scholar 

  81. Chen, X.-J. et al. Superconducting behavior in compressed solid SiH4 with a layered structure. Phys. Rev. Lett. 101, 077002 (2008).

    Google Scholar 

  82. Flores-Livas, J. A. et al. High-pressure structures of disilane and their superconducting properties. Phys. Rev. Lett. 108, 117004 (2012).

    Google Scholar 

  83. Gao, G. et al. Superconducting high pressure phase of germane. Phys. Rev. Lett. 101, 107002 (2008).

    Google Scholar 

  84. Li, Y. et al. Superconductivity at 100 K in dense SiH4(H2)2 predicted by first principles. Proc. Natl Acad. Sci. USA 107, 15708–15711 (2010).

    CAS  Google Scholar 

  85. Wang, H., Tse, J. S., Tanaka, K., Iitaka, T. & Ma, Y. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl Acad. Sci. USA 109, 6463–6466 (2012).

    CAS  Google Scholar 

  86. Li, Y. et al. Pressure-stabilized superconductive yttrium hydrides. Sci. Rep. 5, 9948 (2015).

    CAS  Google Scholar 

  87. Eremets, M. I., Trojan, I. A., Medvedev, S. A., Tse, J. S. & Yao, Y. Superconductivity in hydrogen dominant materials: silane. Science 319, 1506–1509 (2008).

    CAS  Google Scholar 

  88. Degtyareva, O., Proctor, J. E., Guillaume, C. L., Gregoryanz, E. & Hanfland, M. Formation of transition metal hydrides at high pressures. Solid State Commun. 149, 1583–1586 (2009).

    CAS  Google Scholar 

  89. Rousseau, R., Boero, M., Bernasconi, M., Parrinello, M. & Terakura, K. Ab initio simulation of phase transitions and dissociation of H2S at high pressure. Phys. Rev. Lett. 85, 1254–1257 (2000).

    CAS  Google Scholar 

  90. Fujihisa, H. et al. Molecular dissociation and two low-temperature high-pressure phases of H2S. Phys. Rev. B 69, 214102 (2004).

    Google Scholar 

  91. Akashi, R., Sano, W., Arita, R. & Tsuneyuki, S. Possible ‘Magnéli’ phases and self-alloying in the superconducting sulfur hydride. Phys. Rev. Lett. 117, 075503 (2016).

    Google Scholar 

  92. Ishikawa, T. et al. Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure. Sci. Rep. 6, 23160 (2016).

    CAS  Google Scholar 

  93. Errea, I. et al. High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 114, 157004 (2015).

    Google Scholar 

  94. Errea, I. et al. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system. Nature 532, 81–84 (2016).

    CAS  Google Scholar 

  95. Drozdov, A. P., Eremets, M. I. & Troyan, I. A. Superconductivity above 100 K in PH3 at high pressures. Preprint at https://arxiv.org/abs/1508.06224 (2015).

  96. Fu, Y. et al. High-pressure phase stability and superconductivity of pnictogen hydrides and chemical trends for compressed hydrides. Chem. Mater. 28, 1746–1755 (2016).

    CAS  Google Scholar 

  97. Flores-Livas, J. A. et al. Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure. Phys. Rev. B 93, 20508 (2016).

    Google Scholar 

  98. Liu, H., Li, Y., Gao, G., Tse, J. S. & Naumov, I. I. Crystal structure and superconductivity of PH3 at high pressures. J. Phys. Chem. C 120, 3458–3461 (2016).

    CAS  Google Scholar 

  99. Shamp, A. et al. Decomposition products of phosphine under pressure: PH2 stable and superconducting? J. Am. Chem. Soc. 138, 1884–1892 (2016).

    CAS  Google Scholar 

  100. Shamp, A. & Zurek, E. Superconducting high-pressure phases composed of hydrogen and iodine. J. Phys. Chem. Lett. 6, 4067–4072 (2015).

    CAS  Google Scholar 

  101. Zhong, X. et al. Tellurium hydrides at high pressures: high-temperature superconductors. Phys. Rev. Lett. 116, 057002 (2016).

    Google Scholar 

  102. Mahdi Davari Esfahani, M. et al. Superconductivity of novel tin hydrides (SnnHm) under pressure. Sci. Rep. 6, 22873 (2016).

    CAS  Google Scholar 

  103. Zhao, Z., Xu, B. & Tian, Y. Recent advances in superhard materials. Annu. Rev. Mater. Res. 46, 70115–31649 (2016).

    Google Scholar 

  104. Mao, W. L. et al. Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003).

    CAS  Google Scholar 

  105. Li, Q. et al. Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. 102, 175506 (2009).

    Google Scholar 

  106. Wang, Y., Panzik, J. E., Kiefer, B. & Lee, K. K. Crystal structure of graphite under room-temperature compression and decompression. Sci. Rep. 2, 520 (2012).

    Google Scholar 

  107. Wang, L. et al. Long-range ordered carbon clusters: a crystalline material with amorphous building blocks. Science 337, 825–828 (2012).

    CAS  Google Scholar 

  108. Yao, M. et al. Pressure-induced transformation and superhard phase in fullerenes: the effect of solvent intercalation. Appl. Phys. Lett. 103, 71913 (2013).

    Google Scholar 

  109. Lin, Y. et al. Amorphous diamond: a high-pressure superhard carbon allotrope. Phys. Rev. Lett. 107, 175504 (2011).

    Google Scholar 

  110. Solopova, N. A., Dubrovinskaia, N. & Dubrovinsky, L. Raman spectroscopy of glassy carbon up to 60 GPa. Appl. Phys. Lett. 102, 121909 (2013).

    Google Scholar 

  111. Li, Q. et al. Superhard and superconducting structures of BC5. J. Appl. Phys. 108, 23507 (2010).

    Google Scholar 

  112. Solozhenko, V. L., Kurakevych, O. O., Andrault, D., Le Godec, Y. & Mezouar, M. Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5. Phys. Rev. Lett. 102, 15506 (2009).

    Google Scholar 

  113. Zinin, P. V. et al. Phase transition in BCx system under high-pressure and high-temperature: synthesis of cubic dense BC3 nanostructured phase. J. Appl. Phys. 111, 114905 (2012).

    Google Scholar 

  114. Zinin, P. V., Ming, L. C., Kudryashov, I., Konishi, N. & Sharma, S. K. Raman spectroscopy of the BC3 phase obtained under high pressure and high temperature. J. Raman Spectrosc. 38, 1362–1367 (2007).

    CAS  Google Scholar 

  115. Calandra, M. & Mauri, F. High-Tc superconductivity in superhard diamondlike BC5. Phys. Rev. Lett. 101, 016401 (2008).

    Google Scholar 

  116. Zhang, M. et al. Superhard BC3 in cubic diamond structure. Phys. Rev. Lett. 114, 15502 (2015).

    Google Scholar 

  117. Solozhenko, V. L., Andrault, D., Fiquet, G., Mezouar, M. & Rubie, D. C. Synthesis of superhard cubic BC2N. Appl. Phys. Lett. 78, 1385–1387 (2001).

    CAS  Google Scholar 

  118. Zhao, Y. et al. Superhard B–C–N materials synthesized in nanostructured bulks. J. Mater. Res. 17, 3139–3145 (2002).

    CAS  Google Scholar 

  119. Hubert, H. et al. Icosahedral packing of B12 icosahedra in boron suboxide (B6O). Nature 391, 376–378 (1998).

    Google Scholar 

  120. Zerr, A. et al. Synthesis of cubic silicon nitride. Nature 400, 340–342 (1999).

    CAS  Google Scholar 

  121. Pan, Z., Sun, H., Zhang, Y. & Chen, C. Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite. Phys. Rev. Lett. 102, 55503 (2009).

    Google Scholar 

  122. Pan, Z., Sun, H. & Chen, C. Colossal shear-strength enhancement of low-density cubic BC2N bynanoindentation. Phys. Rev. Lett. 98, 135505 (2007).

    Google Scholar 

  123. Zhang, X. et al. First-principles structural design of superhard materials. J. Chem. Phys. 138, 114101 (2013).

    Google Scholar 

  124. Irifune, T., Kurio, A., Sakamoto, S., Inoue, T. & Sumiya, H. Materials: ultrahard polycrystalline diamond from graphite. Nature 421, 599–600 (2003).

    CAS  Google Scholar 

  125. Solozhenko, V. L., Kurakevych, O. O. & Le Godec, Y. Creation of nanostructures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride. Adv. Mater. 24, 1540–1544 (2012).

    CAS  Google Scholar 

  126. Dubrovinskaia, N. et al. Superhard nanocomposite of dense polymorphs of boron nitride: noncarbon material has reached diamond hardness. Appl. Phys. Lett. 90, 2013–2016 (2007).

    Google Scholar 

  127. Tse, J. S., Klug, D. D. & Gao, F. Hardness of nanocrystalline diamonds. Phys. Rev. B 73, 140102 (2006).

    Google Scholar 

  128. Kaner, R. B., Gilman, J. J. & Tolbert, S. H. Materials science. Designing superhard materials. Science 308, 1268–1269 (2005).

    CAS  Google Scholar 

  129. Li, Q., Zhou, D., Zheng, W., Ma, Y. & Chen, C. Anomalous stress response of ultrahard WBn compounds. Phys. Rev. Lett. 115, 185502 (2015).

    Google Scholar 

  130. Li, Q., Zhou, D., Zheng, W., Ma, Y. & Chen, C. Global structural optimization of tungsten borides. Phys. Rev. Lett. 110, 136403 (2013).

    Google Scholar 

  131. Wang, M., Li, Y., Cui, T., Ma, Y. & Zou, G. Origin of hardness in WB4 and its implications for ReB4, TaB4, MoB4, TcB4, and OsB4. Appl. Phys. Lett. 93, 101905 (2008).

    Google Scholar 

  132. Gu, Q., Krauss, G. & Steurer, W. Transition metal borides: superhard versus ultra-incompressible. Adv. Mater. 20, 3620–3626 (2008).

    CAS  Google Scholar 

  133. Gregoryanz, E. et al. Synthesis and characterization of a binary noble metal nitride. Nat. Mater. 3, 294–297 (2004).

    CAS  Google Scholar 

  134. Crowhurst, J. C. et al. Synthesis and characterization of the nitrides of platinum and iridium. Science 311, 1275–1278 (2006).

    CAS  Google Scholar 

  135. Young, A. F. et al. Synthesis of novel transition metal nitrides IrN2 and OsN2. Phys. Rev. Lett. 96, 155501 (2006).

    Google Scholar 

  136. Chen, X.-J. et al. Hard superconducting nitrides. Proc. Natl Acad. Sci. USA 102, 3198–3201 (2005).

    CAS  Google Scholar 

  137. Gao, F. et al. Hardness of covalent crystals. Phys. Rev. Lett. 91, 15502 (2003).

    Google Scholar 

  138. Li, C., Li, J. C. & Jiang, Q. Revisiting the Phillips ionicity of conductors and the quantitative determination of the hardness of carbides and nitrides of transition metals using the LDA+U technique. Solid State Commun. 150, 1818–1821 (2010).

    CAS  Google Scholar 

  139. Li, K., Wang, X., Zhang, F. & Xue, D. Electronegativity identification of novel superhard materials. Phys. Rev. Lett. 100, 235504 (2008).

    Google Scholar 

  140. šimůnek, A. & Vackárš, J. Hardness of covalent and ionic crystals: first-principle calculations. Phys. Rev. Lett. 96, 085501 (2006).

    Google Scholar 

  141. Lyakhov, A. O. & Oganov, A. R. Evolutionary search for superhard materials: methodology and applications to forms of carbon and TiO2. Phys. Rev. B 84, 92103 (2011).

    Google Scholar 

  142. Christe, K. O., Wilson, W. W., Sheehy, J. A. & Boatz, J. A. N5+: a novel homoleptic polynitrogen ion as a high energy density material. Angew. Chem. Int. Ed. 38, 2004–2009 (1999).

    CAS  Google Scholar 

  143. McMahan, A. K. & Lesar, R. Pressure dissociation of solid nitrogen under 1 Mbar. Phys. Rev. Lett. 54, 1929–1932 (1985).

    CAS  Google Scholar 

  144. Vogler, A., Wright, R. E. & Kunkely, H. Photochemical reductive cis-elimination incis-diazidobis(triphenylphosphane)platinum(ii) evidence of the formation of bis(triphenylphosphane)platinum(0) and hexaazabenzene. Angew. Chem. Int. Ed. Engl. 19, 717–718 (1980).

    Google Scholar 

  145. Mailhiot, C. & Yang, L. H. & McMahan, A. K. Polymeric nitrogen. Phys. Rev. B Condens. Matter 46, 14419–14435 (1992).

    CAS  Google Scholar 

  146. Mattson, W. D., Sanchez-Portal, D., Chiesa, S. & Martin, R. M. Prediction of new phases of nitrogen at high pressure from first-principles simulations. Phys. Rev. Lett. 93, 125501 (2004).

    Google Scholar 

  147. Zahariev, F., Hooper, J., Alavi, S., Zhang, F. & Woo, T. K. Low-pressure metastable phase of single-bonded polymeric nitrogen from a helical structure motif and first-principles calculations. Phys. Rev. B 75, 140101 (2007).

    Google Scholar 

  148. Wang, X. et al. Cagelike diamondoid nitrogen at high pressures. Phys. Rev. Lett. 109, 175502 (2012).

    Google Scholar 

  149. Pickard, C. J. & Needs, R. J. High-pressure phases of nitrogen. Phys. Rev. Lett. 102, 125702 (2009).

    Google Scholar 

  150. Zahariev, F., Dudiy, S. V., Hooper, J., Zhang, F. & Woo, T. K. Systematic method to new phases of polymeric nitrogen under high pressure. Phys. Rev. Lett. 97, 155503 (2006).

    CAS  Google Scholar 

  151. Eremets, M. I., Hemley, R. J., Mao, H.-k. & Gregoryanz, E. Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability. Nature 411, 170–174 (2001).

    CAS  Google Scholar 

  152. Goncharov, A. F., Gregoryanz, E., Mao, H. K., Liu, Z. & Hemley, R. J. Optical evidence for a nonmolecular phase of nitrogen above 150 GPa. Phys. Rev. Lett. 85, 1262–1265 (2000).

    CAS  Google Scholar 

  153. Gregoryanz, E. et al. High P-T transformations of nitrogen to 170 GPa. J. Chem. Phys. 126, 184505 (2007).

    Google Scholar 

  154. Eremets, M. I. et al. Polymerization of nitrogen in sodium azide. J. Chem. Phys. 120, 10618–10623 (2004).

    CAS  Google Scholar 

  155. Medvedev, S. A. et al. Phase stability of lithium azide at pressures up to 60 GPa. J. Phys. Condens. Matter 21, 195404 (2009).

    CAS  Google Scholar 

  156. Hou, D. et al. Series of phase transitions in cesium azide under high pressure studied by in situ X-ray diffraction. Phys. Rev. B 84, 064127 (2011).

    Google Scholar 

  157. Zhang, M., Yan, H., Wei, Q. & Liu, H. A new high-pressure polymeric nitrogen phase in potassium azide. RSC Adv. 5, 11825–11830 (2015).

    CAS  Google Scholar 

  158. Prasad, D. L. V. K., Ashcroft, N. W. & Hoffmann, R. Evolving structural diversity and metallicity in compressed lithium azide. J. Phys. Chem. C 117, 20838–20846 (2013).

    CAS  Google Scholar 

  159. Zhang, M., Yan, H., Wei, Q., Wang, H. & Wu, Z. Novel high-pressure phase with pseudo-benzene ‘N6’ molecule of LiN3. Europhys. Lett. 101, 26004 (2013).

    Google Scholar 

  160. Peng, F., Yao, Y., Liu, H. & Ma, Y. Crystalline LiN5 predicted from first-principles as a possible high-energy material. J. Phys. Chem. Lett. 6, 2363 (2015).

    CAS  Google Scholar 

  161. Popov, M. Raman and IR study of high-pressure atomic phase of nitrogen. Phys. Lett. A 334, 317–325 (2005).

    CAS  Google Scholar 

  162. Wang, H. et al. Nitrogen backbone oligomers. Sci. Rep. 5, 13239 (2015).

    CAS  Google Scholar 

  163. Spaulding, D. K. et al. Pressure-induced chemistry in a nitrogen–hydrogen host–guest structure. Nat. Commun. 5, 5739 (2014).

    CAS  Google Scholar 

  164. Goncharov, A. F. et al. Backbone NxH compounds at high pressures. J. Chem. Phys. 142, 214308 (2015).

    Google Scholar 

  165. Raza, Z., Pickard, C. J., Pinilla, C. & Saitta, A. M. High energy density mixed polymeric phase from carbon monoxide and nitrogen. Phys. Rev. Lett. 111, 235501 (2013).

    Google Scholar 

  166. Yin, K., Wang, Y., Liu, H., Peng, F. & Zhang, L. N2H: a novel polymeric hydronitrogen as a high energy density material. J. Mater. Chem. A 3, 4188–4194 (2015).

    CAS  Google Scholar 

  167. Qian, G.-R. et al. Diverse chemistry of stable hydronitrogens, and implications for planetary and materials sciences. Sci. Rep. 6, 25947 (2016).

    CAS  Google Scholar 

  168. Shen, Y. et al. Novel lithium-nitrogen compounds at ambient and high pressures. Sci. Rep. 5, 14204 (2015).

    Google Scholar 

  169. Vos, W. L., Finger, L. W., Hemley, R. J. & Mao, H. Novel H2–H2O clathrates at high pressures. Phys. Rev. Lett. 71, 3150–3153 (1993).

    CAS  Google Scholar 

  170. Mao, W. L. et al. Hydrogen clusters in clathrate hydrate. Science 297, 2247–2249 (2002).

    CAS  Google Scholar 

  171. Strobel, T. A., Somayazulu, M. & Hemley, R. J. Phase behavior of H2+H2O at high pressures and low temperatures. J. Phys. Chem. C 115, 4898–4903 (2011).

    CAS  Google Scholar 

  172. Ciabini, L. et al. Triggering dynamics of the high-pressure benzene amorphization. Nat. Mater. 6, 39–43 (2007).

    CAS  Google Scholar 

  173. Zurek, E., Hoffmann, R., Ashcroft, N. W., Oganov, A. R. & Lyakhov, A. O. A little bit of lithium does a lot for hydrogen. Proc. Natl Acad. Sci. USA 106, 17640–17643 (2009).

    CAS  Google Scholar 

  174. Salamat, A., Deifallah, M., Cabrera, R. Q., Cora, F. & McMillan, P. F. Identification of new pillared-layered carbon nitride materials at high pressure. Sci. Rep. 3, 2122 (2013).

    Google Scholar 

  175. Horvath-Bordon, E. et al. High-pressure synthesis of crystalline carbon nitride imide, C2N2(NH). Angew. Chem. Int. Ed. 46, 1476–1480 (2007).

    CAS  Google Scholar 

  176. Pickard, C. J., Salamat, A., Bojdys, M. J., Needs, R. J. & McMillan, P. F. Carbon nitride frameworks and dense crystalline polymorphs. Phys. Rev. B 94, 94104 (2016).

    Google Scholar 

  177. Dong, X. et al. A stable compound of helium and sodium at high pressure. Nat. Chem.http:\\dx.doi.org\10.1038/nchem.2716 (2017).

  178. Miao, M. Caesium in high oxidation states and as a p-block element. Nat. Chem. 5, 846–852 (2013).

    CAS  Google Scholar 

  179. Botana, J. et al. Mercury under pressure acts as a transition metal: calculated from first principles. Angew. Chem. Int. Ed. 127, 9412–9415 (2015).

    Google Scholar 

  180. Yang, G., Wang, Y., Peng, F., Bergara, A. & Ma, Y. Gold as a 6p-element in dense lithium aurides. J. Am. Chem. Soc. 138, 4046–4052 (2016).

    CAS  Google Scholar 

  181. Botana, J. & Miao, M.-S. Pressure-stabilized lithium caesides with caesium anions beyond the −1 state. Nat. Commun. 5, 4861 (2014).

    CAS  Google Scholar 

  182. Somayazulu, M. et al. Novel broken symmetry phase from N2O at high pressures and high temperatures. Phys. Rev. Lett. 87, 135504 (2001).

    CAS  Google Scholar 

  183. Ninet, S. et al. Experimental and theoretical evidence for an ionic crystal of ammonia at high pressure. Phys. Rev. B 89, 174103 (2014).

    Google Scholar 

  184. Palasyuk, T. et al. Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound. Nat. Commun. 5, 3460 (2014).

    Google Scholar 

  185. Pickard, C. J. & Needs, R. J. Highly compressed ammonia forms an ionic crystal. Nat. Mater. 7, 775–779 (2008).

    CAS  Google Scholar 

  186. Wang, Y. et al. High pressure partially ionic phase of water ice. Nat. Commun. 2, 563 (2011).

    Google Scholar 

  187. Cavazzoni, C. et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999).

    CAS  Google Scholar 

  188. Skriver, H. Calculated structural phase transitions in the alkaline earth metals. Phys. Rev. Lett. 49, 1768–1772 (1982).

    CAS  Google Scholar 

  189. Neaton, J. B. J. & Ashcroft, N. W. Pairing in dense lithium. Nature 400, 141–144 (1999).

    CAS  Google Scholar 

  190. Takemura, K. et al. Phase stability of highly compressed cesium. Phys. Rev. B 61, 14399–14404 (2000).

    CAS  Google Scholar 

  191. Lv, J., Wang, Y., Zhu, L. & Ma, Y. Predicted novel high-pressure phases of lithium. Phys. Rev. Lett. 106, 15503 (2011).

    Google Scholar 

  192. Li, P., Gao, G., Wang, Y. & Ma, Y. Crystal structures and exotic behavior of magnesium under pressure. J. Phys. Chem. C 114, 21745–21749 (2010).

    CAS  Google Scholar 

  193. Pickard, C. J. & Needs, R. J. Aluminium at terapascal pressures. Nat. Mater. 9, 624–627 (2010).

    CAS  Google Scholar 

  194. Zhu, Q., Oganov, A. & Lyakhov, A. Novel stable compounds in the Mg–O system under high pressure. Phys. Chem. Chem. Phys. 15, 7696–7700 (2013).

    CAS  Google Scholar 

  195. Zurek, E., Wen, X. D. & Hoffmann, R. (Barely) solid Li(NH3)4: the electronics of an expanded metal. J. Am. Chem. Soc. 133, 3535–3547 (2011).

    CAS  Google Scholar 

  196. Zhou, Y. et al. Prediction of host–guest Na–Fe intermetallics at high pressures. Inorg. Chem. 55, 7026–7032 (2016).

    CAS  Google Scholar 

  197. Demazeau, G. Growth of cubic boron nitride by chemical vapor deposition and high-pressure high-temperature synthesis. Diam. Relat. Mater. 2, 197–200 (1993).

    CAS  Google Scholar 

  198. Xiao, G. et al. A protocol to fabricate nanostructured new phase: B31-type MnS synthesized under high pressure. J. Am. Chem. Soc. 137, 10297–10303 (2015).

    CAS  Google Scholar 

  199. Ahart, M. et al. Synthesis of polar ordered oxynitride perovskite. Preprint athttps://arxiv.org/abs/1604.03989 (2016).

  200. Zhou, Y. et al. Pressure-induced superconductivity in a three-dimensional topological material ZrTe5. Proc. Natl Acad. Sci. USA 113, 2904–2909 (2016).

    CAS  Google Scholar 

  201. Matsuoka, T. & Shimizu, K. Direct observation of a pressure-induced metal-to-semiconductor transition in lithium. Nature 458, 186–189 (2009).

    CAS  Google Scholar 

  202. Schwarz, U., Grzechnik, A., Syassen, K., Loa, I. & Hanfland, M. Rubidium-IV: a high pressure phase with complex crystal structure. Phys. Rev. Lett. 83, 4085–4088 (1999).

    CAS  Google Scholar 

  203. Neaton, J. B. & Ashcroft, N. W. On the constitution of sodium at higher densities. Phys. Rev. Lett. 86, 2830–2833 (2001).

    CAS  Google Scholar 

  204. Batsanov, S. S. Effect of high pressure on crystal electronegativities of elements. J. Phys. Chem. Solids 58, 527–532 (1997).

    CAS  Google Scholar 

  205. Shimizu, K., Ishikawa, H., Takao, D., Yagi, T. & Amaya, K. Superconductivity in compressed lithium at 20 K. Nature 419, 597–599 (2002).

    CAS  Google Scholar 

  206. Gregoryanz, E. et al. Superconductivity in the chalcogens up to multimegabar pressures. Phys. Rev. B 65, 064504 (2002).

    Google Scholar 

  207. Christensen, N. E. & Novikov, D. L. Predicted superconductive properties of lithium under pressure. Phys. Rev. Lett. 86, 1861–1864 (2001).

    CAS  Google Scholar 

  208. Sakata, M., Nakamoto, Y., Shimizu, K., Matsuoka, T. & Ohishi, Y. Superconducting state of Ca-VII below a critical temperature of 29 K at a pressure of 216 GPa. Phys. Rev. B 83, 220512 (2011).

    Google Scholar 

  209. Zhi-An, R. et al. Superconductivity at 55 K in iron-based f-doped layered quaternary compound Sm[O1 – xFx] FeAs. Chinese Phys. Lett. 25, 2215–2216 (2008).

    Google Scholar 

  210. Debessai, M., Hamlin, J. J. & Schilling, J. S. Comparison of the pressure dependences of T c in the trivalent d-electron superconductors Sc, Y, La, and Lu up to megabar pressures. Phys. Rev. B 78, 64519 (2008).

    Google Scholar 

  211. Somayazulu, M. S., Finger, L. W., Hemley, R. J. & Mao, H. K. High-pressure compounds in methane-hydrogen mixtures. Science 271, 1400–1402 (1996).

    CAS  Google Scholar 

  212. Parker, L. J., Atou, T. & Badding, J. V. Transition element-like chemistry for potassium under pressure. Science 273, 95–97 (1996).

    CAS  Google Scholar 

  213. Ninet, S., Datchi, F. & Saitta, A. M. Proton disorder and superionicity in hot dense ammonia ice. Phys. Rev. Lett. 108, 165702 (2012).

    CAS  Google Scholar 

  214. Sugimura, E. et al. Experimental evidence of superionic conduction in H2O ice. J. Chem. Phys. 137, 194505 (2012).

    Google Scholar 

  215. Goncharov, A. F. et al. Dynamic ionization of water under extreme conditions. Phys. Rev. Lett. 94, 125508 (2005).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the National Key Research and Development Program of China (under Grant No. 2016YFB0201200), National Natural Science Foundation of China (under Grants No. 11404131, 11674121 and 11534003), 2012 Changjiang Scholar of Ministry of Education, Recruitment Program of Global Youth Experts in China, and Science Challenge Project (under Grant No. JCKY2016212A501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanming Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, Y., Lv, J. et al. Materials discovery at high pressures. Nat Rev Mater 2, 17005 (2017). https://doi.org/10.1038/natrevmats.2017.5

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2017.5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing