Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion

Abstract

The carbon dioxide challenge is one of the most pressing problems facing our planet. Each stage in the carbon cycle — capture, regeneration and conversion — has its own materials requirements. Recent work on metal–organic frameworks (MOFs) demonstrated the potential and effectiveness of these materials in addressing this challenge. In this Review, we identify the specific structural and chemical properties of MOFs that have led to the highest capture capacities, the most efficient separations and regeneration processes, and the most effective catalytic conversions. The interior of MOFs can be designed to have coordinatively unsaturated metal sites, specific heteroatoms, covalent functionalization, other building unit interactions, hydrophobicity, porosity, defects and embedded nanoscale metal catalysts with a level of precision that is crucial for the development of higher-performance MOFs. To realize a total solution, it is necessary to use the precision of MOF chemistry to build more complex materials to address selectivity, capacity and conversion together in one material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chronology of key achievements made in the field of MOFs and CO2.
Figure 2: Important structural design features of effective MOF adsorbents for selective CO2 capture.
Figure 3: IRMOF-74-III with alkylamine functionality for the chemisorption of CO2 in the presence of water.
Figure 4: Selectivity versus CO2 permeability compared to the Robeson upper bound curves for pure polymeric, mixed-matrix and pure MOF membranes.
Figure 5: Strategies for improving photochemical CO2 reduction.
Figure 6: Electrocatalytic reduction of CO2 to CO by a Co-porphyrin-containing MOF.
Figure 7: Proposed mechanism for the catalytic cycloaddition of propylene oxide with CO2 by Hf-NU-1000 to form a cyclic carbonate.

Similar content being viewed by others

References

  1. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    Article  CAS  Google Scholar 

  2. Sumida, K. et al. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012).

    Article  CAS  Google Scholar 

  3. Li, J.-R. et al. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 255, 1791–1823 (2011).

    Article  CAS  Google Scholar 

  4. Jiang, J., Zhao, Y. & Yaghi, O. M. Covalent chemistry beyond molecules. J. Am. Chem. Soc. 138, 3255–3265 (2016).

    Article  CAS  Google Scholar 

  5. Furukawa, H., Muller, U. & Yaghi, O. M. “Heterogeneity within order” in metal-organic frameworks. Angew. Chem. Int. Ed. 54, 3417–3430 (2015).

    Article  CAS  Google Scholar 

  6. Millward, A. R. & Yaghi, O. M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999 (2005).

    Article  CAS  Google Scholar 

  7. Britt, D., Furukawa, H., Wang, B., Glover, T. G. & Yaghi, O. M. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc. Natl Acad. Sci. USA 106, 20637–20640 (2009). This publication describes the first breakthrough experiment using MOFs, which is an important method for evaluating CO2 capture under dynamic conditions.

    Article  CAS  Google Scholar 

  8. Mason, J. A. et al. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. J. Am. Chem. Soc. 137, 4787–4803 (2015).

    Article  CAS  Google Scholar 

  9. Bao, Z., Yu, L., Ren, Q., Lu, X. & Deng, S. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J. Colloid Interface Sci. 353, 549–556 (2011).

    Article  CAS  Google Scholar 

  10. Caskey, S. R., Wong-Foy, A. G. & Matzger, A. J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870–10871 (2008).

    Article  CAS  Google Scholar 

  11. Märcz, M., Johnsen, R. E., Dietzel, P. D. C. & Fjellvåg, H. The iron member of the CPO-27 coordination polymer series: synthesis, characterization, and intriguing redox properties. Microporous Mesoporous Mater. 157, 62–74 (2012).

    Article  CAS  Google Scholar 

  12. Yazaydin, A. O. et al. Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198–18199 (2009).

    Article  CAS  Google Scholar 

  13. Wang, L. J. et al. Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 53, 5881–5883 (2014).

    Article  CAS  Google Scholar 

  14. Queen, W. L. et al. Comprehensive study of carbon dioxide adsorption in the metal-organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn). Chem. Sci. 5, 4569–4581 (2014).

    Article  CAS  Google Scholar 

  15. Kizzie, A. C., Wong-Foy, A. G. & Matzger, A. J. Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. Langmuir 27, 6368–6373 (2011).

    Article  CAS  Google Scholar 

  16. Si, X. et al. High and selective CO2 uptake, H2 storage and methanol sensing on the amine-decorated 12-connected MOF CAU-1. Energy Environ. Sci. 4, 4522–4527 (2011).

    Article  CAS  Google Scholar 

  17. Cui, P. et al. Multipoint interactions enhanced CO2 uptake: a zeolite-like zinc-tetrazole framework with 24-nuclear zinc cages. J. Am. Chem. Soc. 134, 18892–18895 (2012).

    Article  CAS  Google Scholar 

  18. An, J., Geib, S. J. & Rosi, N. L. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. J. Am. Chem. Soc. 132, 38–39 (2010).

    Article  CAS  Google Scholar 

  19. Meyers, A. L. & Prausnitz, J. M. Thermodynamics of mixed-gas adsorption. AlChE J. 11, 121–127 (1965).

    Article  Google Scholar 

  20. Hwang, Y. K. et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew. Chem. Int. Ed. 47, 4144–4148 (2008). This paper reported the initial strategy of grafting alkylamines onto MOF structures, thus paving the way for realizing chemisorptive MOF materials.

    Article  CAS  Google Scholar 

  21. Demessence, A., D’Alessandro, D. M., Foo, M. L. & Long, J. R. Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. J. Am. Chem. Soc. 131, 8784–8786 (2009).

    Article  CAS  Google Scholar 

  22. McDonald, T. M., D’Alessandro, D. M., Krishna, R. & Long, J. R. Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal-organic framework CuBTTri. Chem. Sci. 2, 2022–2028 (2011).

    Article  CAS  Google Scholar 

  23. McDonald, T. M. et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012).

    Article  CAS  Google Scholar 

  24. Fracaroli, A. M. et al. Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. J. Am. Chem. Soc. 136, 8863–8866 (2014).

    Article  CAS  Google Scholar 

  25. Xiong, Y. et al. Amide and N-oxide functionalization of T-shaped ligands aford isoreticular MOFs with giant enhancements in CO2 separation. Chem. Commun. 50, 14631–14634 (2014).

    Article  CAS  Google Scholar 

  26. Safarifard, V. et al. Influence of the amide groups in the CO2/N2 selectivity of a series of isoreticular, interpenetrated metal-organic frameworks. Cryst. Growth Des. 16, 6016–6023 (2016).

    Article  CAS  Google Scholar 

  27. Benson, O. et al. Amides do not always work: observation of guest binding in an amide-functionalized porous metal-organic framework. J. Am. Chem. Soc. 138, 14828–14831 (2016).

    Article  CAS  Google Scholar 

  28. Burd, S. D. et al. Highly selective carbon dioxide uptake by [Cu(bpy-n)2(SiF6)] (bpy-1 = 4,4′-bipyridine; bpy-2 = 1,2-bis(4-pyridyl)ethene). J. Am. Chem. Soc. 134, 3663–3666 (2012).

    Article  CAS  Google Scholar 

  29. Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013).

    Article  CAS  Google Scholar 

  30. Liao, P. Q. et al. Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas. Energy Environ. Sci. 8, 1011–1016 (2015).

    Article  CAS  Google Scholar 

  31. Nguyen, N. T. T. et al. Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks. Angew. Chem. Int. Ed. 53, 10645–10648 (2014). This report details the synthesis of hydrophobic ZIFs for selective capture of CO2 in the presence of water.

    Article  CAS  Google Scholar 

  32. Ding, N. et al. Partitioning MOF-5 into confined and hydrophobic compartments for carbon capture under humid conditions. J. Am. Chem. Soc. 138, 10100–10103 (2016).

    Article  CAS  Google Scholar 

  33. Zhang, Z. et al. Polymer-metal-organic frameworks (polyMOFs) as water tolerant materials for selective carbon dioxide separations. J. Am. Chem. Soc. 138, 920–925 (2016).

    Article  CAS  Google Scholar 

  34. Liu, B. et al. Significant enhancement of gas uptake capacity and selectivity via the judicious increase of open metal sites and Lewis basic sites within two polyhedron-based metal–organic frameworks. Chem. Commun. 52, 3223–3226 (2016).

    Article  CAS  Google Scholar 

  35. Forrest, K. A., Pham, T., McLaughlin, K., Hogan, A. & Space, B. Insights into an intriguing gas sorption mechanism in a polar MOF with open metal sites and narrow channels. Chem. Commun. 50, 7283–7286 (2014).

    Article  CAS  Google Scholar 

  36. Li, B. et al. Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework. Angew. Chem. Int. Ed. 51, 1412–1415 (2012).

    Article  CAS  Google Scholar 

  37. Kim, J. et al. Control of catenation in CuTATB-n metal–organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. J. Mater. Chem. 21, 3070–3076 (2011).

    Article  CAS  Google Scholar 

  38. Zheng, B., Bai, J., Duan, J., Wojtas, L. & Zaworotko, M. J. Enhanced CO2 binding affinity of a high-uptake rht -type metal-organic framework decorated with acylamide groups. J. Am. Chem. Soc. 133, 758–751 (2011).

    Google Scholar 

  39. Lu, Y. et al. Porous pcu-type Zn(II) framework material with high adsorption selectivity for CO2 over N2 . J. Mol. Struct. 1107, 66–69 (2016).

    Article  CAS  Google Scholar 

  40. Law, J., Watkins, S. & Alexander, D. In-flight carbon dioxide exposures and related symptoms: associate, susceptibility, and operational implications (NASA, 2010).

    Google Scholar 

  41. Dallbauman, L. A. & Finn, J. E. in Adsorption and its Applications in Industry and Environmental Protection: Applications in Environmental Protections, Part B Vol. 120 (ed. Dabrowski, A. ) 455–471 (Elsevier, 1999).

    Book  Google Scholar 

  42. Bhatt, P. M. et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption. J. Am. Chem. Soc. 138, 9301–9307 (2016). This contribution describes the first MOF applied towards the capture of a trace amount of CO2 in confined spaces.

    Article  CAS  Google Scholar 

  43. Cavenati, S., Grande, C. A. & Rodrigues, A. E. Removal of carbon dioxide from natural gas by vacuum pressure swing adsorption. Energy Fuels 20, 2648–2659 (2006).

    Article  CAS  Google Scholar 

  44. Ferey, G. et al. Why hybrid porous solids capture greenhouse gases? Chem. Soc. Rev. 40, 550–562 (2011).

    Article  CAS  Google Scholar 

  45. Li, J. R., Sculley, J. & Zhou, H.-C. Metal-organic frameworks for separations. Chem. Rev. 112, 869–832 (2012).

    Article  CAS  Google Scholar 

  46. Xiong, S. et al. A new tetrazolate zeolite-like framework for highly selective CO2/CH4 and CO2/N2 separation. Chem. Commun. 50, 12101–12104 (2014).

    Article  CAS  Google Scholar 

  47. Nguyen, N. T. T. et al. Mixed-metal zeolitic imidazolate frameworks and their selective capture of wet carbon dioxide over methane. Inorg. Chem. 55, 6201–6207 (2016).

    Article  CAS  Google Scholar 

  48. Chen, K.-J. et al. Tuning pore size in square-lattice coordination networks for size-selective sieving of CO2 . Angew. Chem. Int. Ed. 55, 10268–10272 (2016).

    Article  CAS  Google Scholar 

  49. Chen, Z. et al. Significantly enhanced CO2/CH4 separation selectivity within a 3D prototype metal-organic framework functionalized with OH groups on pore surfaces at room temperature. Eur. J. Inorg. Chem. 2011, 2227–2231 (2011).

    Article  CAS  Google Scholar 

  50. Bae, Y.-S. et al. Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks. Langmuir 24, 8592–8598 (2008).

    Article  CAS  Google Scholar 

  51. Hamon, L. et al. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature. J. Am. Chem. Soc. 131, 8775–8777 (2009).

    Article  CAS  Google Scholar 

  52. Hamon, L. et al. Molecular insight into the adsorption of H2S in the flexible MIL-53(Cr) and rigid MIL-47(V) MOFs: Infrared spectroscopy combined to molecular simulations. J. Phys. Chem. C 115, 2047–2056 (2011).

    Article  CAS  Google Scholar 

  53. Belmabkhout, Y. et al. Metal-organic frameworks to satisfy gas upgrading demands: fine-tuning the soc-MOF platform for the operative removal of H2S. J. Mater. Chem. A 5, 3293–3303 (2017).

    Article  CAS  Google Scholar 

  54. Vellingiri, K., Deep, A. & Kim, K.-H. Metal-organic frameworks as a potential platform for selective treatment of gaseous sulfur compounds. ACS Appl. Mater. Interfaces 8, 29835–29857 (2016).

    Article  CAS  Google Scholar 

  55. Gedrich, K. et al. A highly porous metal-organic framework with open nickel sites. Angew. Chem. Int. Ed. 49, 8489–8492 (2010).

    Article  CAS  Google Scholar 

  56. Alezi, D. et al. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J. Am. Chem. Soc. 137, 13308–13318 (2015).

    Article  CAS  Google Scholar 

  57. Yuan, D., Zhao, D., Sun, D. & Zhou, H. C. An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Ed. 49, 5357–5361 (2010).

    Article  CAS  Google Scholar 

  58. Xue, M. et al. New prototype isoreticular metal-organic framework Zn4O(FMA)3 for gas storage. Inorg. Chem. 48, 4649–4651 (2009).

    Article  CAS  Google Scholar 

  59. Farha, O. K. et al. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2, 944–948 (2010).

    Article  CAS  Google Scholar 

  60. Dietzel, P. D. C., Besikiotis, V. & Blom, R. Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. J. Mater. Chem. 19, 7362–7370 (2009).

    Article  CAS  Google Scholar 

  61. Llewellyn, P. L. et al. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. Langmuir 24, 7245–7250 (2008).

    Article  CAS  Google Scholar 

  62. Furukawa, H. et al. Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010). This report details the synthesis of ultra-highly porous MOFs, using the principles of reticular chemistry, which resulted in record-breaking CO2 uptake properties.

    Article  CAS  Google Scholar 

  63. Mason, J. A., Sumida, K., Herm, Z. R., Krishna, R. & Long, J. R. Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 4, 3030–3040 (2011). This publication demonstrated the feasibility of regenerating MOFs through temperature swing adsorption processes.

    Article  CAS  Google Scholar 

  64. Olajire, A. A. CO2 capture and separation technologies for end-of-pipe applications — a review. Energy 35, 2610–2628 (2010).

    Article  CAS  Google Scholar 

  65. Yu, C.-H., Huang, C.-H. & Tan, C.-S. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 12, 745–769 (2012).

    Article  CAS  Google Scholar 

  66. Sircar, S. & Golden, T. C. Purification of hydrogen by pressure swing adsorption. Sep. Sci. Technol. 35, 667–687 (2000).

    Article  CAS  Google Scholar 

  67. Herm, Z. R., Swisher, J. A., Smit, B., Krishna, R. & Long, J. R. Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J. Am. Chem. Soc. 133, 5664–5667 (2011).

    Article  CAS  Google Scholar 

  68. Ferreira, A. F. P., Ribeiro, A. M., Kulaç, S. & Rodrigues, A. E. Methane purification by adsorptive processes on MIL-53(Al). Chem. Eng. Sci. 124, 79–95 (2015).

    Article  CAS  Google Scholar 

  69. Serra-Crespo, P. et al. Preliminary design of a vacuum pressure swing adsorption process for natural gas upgrading based on amino-functionalized MIL-53. Chem. Eng. Technol. 38, 1183–1194 (2015).

    Article  CAS  Google Scholar 

  70. Berger, A. H. & Bhown, A. S. Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption. Energy Procedia 4, 562–567 (2011).

    Article  CAS  Google Scholar 

  71. McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303–308 (2015). This work highlights an alternative CO2 capture mechanism for an alkylamine-appended MOF to the established aqueous monoethanolamine system, indicating solid-state systems may operate differently despite both being chemisorptive processes.

    Article  CAS  Google Scholar 

  72. Ye, S. et al. Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal-organic frameworks: adsorption, separation and regeneration investigations. Microporous Mesoporous Mater. 179, 191–197 (2013).

    Article  CAS  Google Scholar 

  73. Dasgupta, S. et al. CO2 recovery from mixtures with nitrogen in a vacuum swing adsorber using metal-organic framework adsorbent: a comparative study. Int. J. Greenh. Gas Control 7, 225–229 (2012).

    Article  CAS  Google Scholar 

  74. Andersen, A. et al. On the development of vacuum swing adsorption (VSA) technology for post-combustion CO2 capture. Energy Procedia 37, 33–39 (2013).

    Article  CAS  Google Scholar 

  75. Zhang, Y., Sunarso, J., Liu, S. M. & Wang, R. Current status and development of membranes for CO2/CH4 separation: A review. Int. J. Greenhouse Gas Control 12, 84–107 (2013).

    Article  CAS  Google Scholar 

  76. Robeson, L. M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62, 165–185 (1991).

    Article  CAS  Google Scholar 

  77. Rui, Z., James, J. B., Kasik, A. & Lin, Y. S. Metal-organic framework membrane process for high purity CO2 production. AlChE J. 62, 3836–3841 (2016).

    Article  CAS  Google Scholar 

  78. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).

    Article  CAS  Google Scholar 

  79. Koros, W. J. & Mahajan, R. Pushing the limits on possibilities for large scale gas separation: which strategies? J. Membr. Sci. 181, 141 (2001).

    Article  CAS  Google Scholar 

  80. Venna, S. R. & Carreon, M. A. Metal-organic framework membranes for carbon dioxide separation. Chem. Eng. Sci. 124, 3–19 (2015).

    Article  CAS  Google Scholar 

  81. Hermes, S., Schroder, F., Chelmowski, R., Woll, C. & Fischer, R. A. Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J. Am. Chem. Soc. 127, 13744–13745 (2005). This contribution details the growth of the first pure MOF membrane, which serves as the basis for later developments in using MOF membranes for gas separations.

    Article  CAS  Google Scholar 

  82. Liu, Y. et al. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous Mesoporous Mater. 118, 296–301 (2009).

    Article  CAS  Google Scholar 

  83. Qiu, S., Xue, M. & Zhu, G. Metal-organic framework membranes: from synthesis to separation application. Chem. Soc. Rev. 43, 6116–6140 (2014).

    Article  CAS  Google Scholar 

  84. Liu, Y. et al. Remarkable enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks. Angew. Chem. Int. Ed. 54, 3028–3032 (2015).

    Article  CAS  Google Scholar 

  85. Peng, Y. et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    Article  CAS  Google Scholar 

  86. Liu, Y., Zeng, G., Pan, Y. & Lai, Z. Synthesis of highly c -oriented ZIF-69 membranes by secondary growth and their gas permeation properties. J. Membr. Sci. 379, 46–51 (2011).

    Article  CAS  Google Scholar 

  87. Liu, Y., Hu, E. P., Khan, E. A. & Lai, Z. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. J. Membr. Sci. 353, 36–40 (2010).

    Article  CAS  Google Scholar 

  88. An, J., Fiorella, R., Geib, S. J. & Rosi, N. L. Synthesis, structure, assembly, and modulation of the CO2 adsorption properties of a zinc-adeninate macrocyle. J. Am. Chem. Soc. 131, 8401–8403 (2009).

    Article  CAS  Google Scholar 

  89. Bohrman, J. A. & Carreon, M. A. Synthesis and CO2/CH4 separation performance of bio-MOF-1 membranes. Chem. Commun. 48, 5130–5132 (2012).

    Article  CAS  Google Scholar 

  90. Xie, Z., Li, T., Rosi, N. L. & Carreon, M. A. Alumina-supported cobalt-adeninate MOF membranes for CO2/CH4 separation. J. Mater. Chem. A 2, 1239–1241 (2014).

    Article  CAS  Google Scholar 

  91. Al-Maythalony, B. A. et al. Quest for anionic MOF membranes: continuous sod-ZMOF membrane with CO2 adsorption-driven selectivity. J. Am. Chem. Soc. 137, 1754–1757 (2015).

    Article  CAS  Google Scholar 

  92. Bétard, A. et al. Fabrication of a CO2-selective membrane by stepwise liquid-phase deposition of an alkylether functionalized pillared-layered metal-organic framework [Cu2L2P]n on a macroporous support. Microporous Mesoporous Mater. 150, 76–82 (2012).

    Article  CAS  Google Scholar 

  93. Huang, A., Liu, Q., Wang, N. & Caro, J. Organosilica functionalized zeolitic imidazolate framework ZIF-90 membrane for CO2/CH4 separation. Microporous Mesoporous Mater. 192, 18–22 (2014).

    Article  CAS  Google Scholar 

  94. Zhao, Z., Ma, X., Kasik, A., Li, Z. & Lin, Y. S. Gas separation properties of metal organic framework (MOF-5) membranes. Ind. Eng. Chem. Res. 52, 1102–1108 (2013).

    Article  CAS  Google Scholar 

  95. Yin, H. et al. A highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO2-N2 separation. Chem. Commun. 50, 3699–3701 (2014).

    Article  CAS  Google Scholar 

  96. Yehia, H., Pisklak, T. J., Ferraris, J. P., Balkus, K. J. & Musselman, I. H. Methane facilitated transport using copper(II) biphenyl dicarboxylate-triethylenediamine poly(3-acetoxyethylthiophene) mixed matrix membranes. Polym. Preprints 45, 35–36 (2004).

    CAS  Google Scholar 

  97. Bae, T.-H. & Long, J. R. CO2/N2 separation with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy Environ. Sci. 6, 3565–3569 (2013).

    Article  CAS  Google Scholar 

  98. Bae, T.-H. et al. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angew. Chem. Int. Ed. 49, 9863–9866 (2010).

    Article  CAS  Google Scholar 

  99. Seoane, B. et al. Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem. Soc. Rev. 44, 2421–2454 (2015).

    Article  CAS  Google Scholar 

  100. Duan, C., Ji, X., Liu, D., Cao, Y. & Yuan, Q. Post-treatment effect on gas separation property of mixed matrix membranes containing metal organic frameworks. J. Membr. Sci. 466, 92–102 (2014).

    Article  CAS  Google Scholar 

  101. Al-Maythalony, B. et al. Tuning the interplay between selectivity and permeability of ZIF-7 mixed matrix membranes. ACS Appl. Mater. Interfaceshttp://dx.doi.org/10.1021/acsami.6b15803 (2017). This contribution details a post-synthetic modification strategy to fine-tune the permselectivity of spongy mixed matrix membranes.

  102. Wang, Z., Wang, D., Zhang, S., Hu, L. & Jin, J. Interfacial design of mixed matrix membranes for improved gas separation performance. Adv. Mater. 28, 3399–3405 (2016).

    Article  CAS  Google Scholar 

  103. Zhang, C. et al. Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations. AIChE J. 60, 2625–2635 (2014).

    Article  CAS  Google Scholar 

  104. Wang, C., Xie, Z., DeKrafft, K. E. & Lin, W. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133, 13445–13454 (2011).

    Article  CAS  Google Scholar 

  105. Choi, K. et al. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light. J. Am. Chem. Soc. 139, 356–362 (2017). This publication details the use of a ‘heterogeneity within order’ strategy for constructing a highly active photocatalytic MOF used for CO2 conversion to CO.

    Article  CAS  Google Scholar 

  106. Fu, Y. et al. An amine-functionalized titantium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 51, 3364–3367 (2012).

    Article  CAS  Google Scholar 

  107. Wang, D., Huang, R., Liu, W., Sun, D. & Li, Z. Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 4, 4254–4260 (2014).

    Article  CAS  Google Scholar 

  108. Sun, D. et al. Construction of a supported Ru complex on bifunctional MOF-253 for photocatalytic CO2 reduction under visible light. Chem. Commun. 51, 2645–2648 (2015).

    Article  CAS  Google Scholar 

  109. Zhang, S. et al. Hierarchical metal–organic framework nanoflowers for effective CO2 transformation driven by visible light. J. Mater. Chem. A 3, 15764–15768 (2015).

    Article  CAS  Google Scholar 

  110. Zhang, S., Li, L., Zhao, S., Sun, Z. & Luo, J. Construction of interpenetrated ruthenium metal−organic frameworks as stable photocatalysts for CO2 reduction. Inorg. Chem. 54, 8375–8379 (2015).

    Article  CAS  Google Scholar 

  111. Wu, P. et al. Photoactive metal−organic framework and its film for light-driven hydrogen production and carbon dioxide reduction. Inorg. Chem. 55, 8153–8159 (2016).

    Article  CAS  Google Scholar 

  112. Li, L. et al. Effective visible-light driven CO2 photoreduction via a promising bifunctional iridium coordination polymer. Chem. Sci. 5, 3808–3813 (2014).

    Article  CAS  Google Scholar 

  113. Wang, S., Yao, W., Lin, J., Ding, Z. & Wang, X. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem. Int. Ed. 53, 1034–1038 (2014).

    Article  CAS  Google Scholar 

  114. Fei, H., Sampson, M. D., Lee, Y., Kubiak, C. P. & Cohen, S. M. Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal-organic framework. Inorg. Chem. 54, 6821–6828 (2015).

    Article  CAS  Google Scholar 

  115. Sun, D. et al. Studies on photocatalytic CO2 reduction over NH2-UiO-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks. Chem. Eur. J. 19, 14279–14285 (2013).

    Article  CAS  Google Scholar 

  116. Lee, Y., Kim, S., Kang, J. K. & Cohen, S. M. Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. Chem. Commun. 51, 5735–5738 (2015).

    Article  CAS  Google Scholar 

  117. Sun, D., Liu, W., Qiu, M., Zhang, Y. & Li, Z. Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal-organic frameworks (MOFs). Chem. Commun. 51, 2056–2059 (2015).

    Article  CAS  Google Scholar 

  118. Chen, D., Xing, H., Wang, C. & Su, Z. Highly efficient visible-light-driven CO2 reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes. J. Mater. Chem. A 4, 2657–2662 (2016).

    Article  CAS  Google Scholar 

  119. Liu, Y. et al. Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal-organic framework. ACS Appl. Mater. Interfaces 5, 7654–7658 (2013).

    Article  CAS  Google Scholar 

  120. Khaletskaya, K. et al. Fabrication of gold/titania photocatalyst for CO2 reduction based on pyrolytic conversion of the metal-organic framework NH2-MI-125(Ti) loaded with gold nanoparticles. Chem. Mater. 27, 7248–7257 (2015).

    Article  CAS  Google Scholar 

  121. Li, R. et al. Integration of an inorganic semiconductor with a metal-organic framework: a platform for enhanced gaseous photocatalytic reactions. Adv. Mater. 26, 4783–4788 (2014).

    Article  CAS  Google Scholar 

  122. Li, W. in Advances in CO2 Conversion and Utilization (ed. Hu, Y. H. ) 55–76 (American Chemical Society, 2010).

    Book  Google Scholar 

  123. Hinogami, R. et al. Electrochemical reduction of carbon dioxide using a copper rubeanate metal-organic framework. ECS Electrochem. Lett. 1, H17–H19 (2012).

    Article  CAS  Google Scholar 

  124. Senthil Kumar, R., Senthil Kumar, S. & Anbu Kulandainathan, M. Highly selective eletrochemical reduction of carbon dioxide using Cu-based metal-organic framework as an electrocatalyst. Electrochem. Commun. 25, 70–73 (2012).

    Article  CAS  Google Scholar 

  125. Kornienko, N. et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129–14135 (2015).

    Article  CAS  Google Scholar 

  126. Hod, I. et al. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2 . ACS Catal. 5, 6302–6309 (2015). This electrocatalytic system makes use of a highly active molecular catalyst as the linker for MOF synthesis. The resulting thin films lead to maximal mass and charge transport for CO2 reduction.

    Article  CAS  Google Scholar 

  127. Rungtaweevoranit, B. et al. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett. 16, 7645–7649 (2016). This contribution is the first report of a MOF used for hydrogenation of CO2 to a liquid fuel.

    Article  CAS  Google Scholar 

  128. An, B. et al. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2 . J. Am. Chem. Soc. 139, 3834–3840 (2017).

    Article  CAS  Google Scholar 

  129. Aresta, M., Dibenedetto, A. & Angelini, A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2 . Chem. Rev. 114, 1709–1742 (2014).

    Article  CAS  Google Scholar 

  130. Sakakura, T., Choi, J.-C. & Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 107, 2365–2387 (2007).

    Article  CAS  Google Scholar 

  131. Beyzavi, M. H. et al. Metal-organic framework-based catalysts: chemical fixation of CO2 with epoxides leading to cyclic organic carbonates. Front. Energy Res. 2, 63 (2015).

    Article  Google Scholar 

  132. He, H., Perman, J. A., Zhu, G. & Ma, S. Metal-organic frameworks for CO2 chemical transformations. Small 12, 6309–6324 (2016).

    Article  CAS  Google Scholar 

  133. Song, J. et al. MOF-5/n-Bu4Br: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chem. 11, 1031–1036 (2009).

    Article  CAS  Google Scholar 

  134. Rayon, U. et al. Engineering of coordination polymers for shape selective alkylation of large aromatics and the role of defects. Microporous Mesoporous Mater. 129, 319–329 (2010).

    Article  CAS  Google Scholar 

  135. Miralda, C. M., Macias, E. E., Zhu, M., Ratnasamy, P. & Carreon, M. A. Zeolitic imidazolate framework-8 catalysts in the conversion of CO2 to chloropropene carbonate. ACS Catal. 2, 180–183 (2012).

    Article  CAS  Google Scholar 

  136. Cho, H.-Y., Yang, D.-A., Kim, J., Jeong, S.-Y. & Ahn, W.-S. CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating. Catal. Today 185, 35–40 (2012).

    Article  CAS  Google Scholar 

  137. Guillerm, V. et al. Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal-organic frameworks. Nat. Chem. 6, 673–680 (2014).

    Article  CAS  Google Scholar 

  138. Kleist, W., Jutz, F., Maciejewski, M. & Baiker, A. Mixed-linker metal-organic frameworks as catalysts for the synthesis of propylene carbonate from propylene oxide and CO2 . Eur. J. Inorg. Chem. 2009, 3552–3561 (2009).

    Article  CAS  Google Scholar 

  139. Li, P.-Z. et al. A triazole-containing metal-organic framework as a highly effective and substrate size-dependent catalyst for CO2 conversion. J. Am. Chem. Soc. 138, 2142–2145 (2016).

    Article  CAS  Google Scholar 

  140. Jiang, Z.-R., Wang, H., Hu, Y., Lu, J. & Jiang, H.-L. Polar group and defect engineering in a metal-organic framework: synergistic promotion of carbon dioxide sorption and conversion. ChemSusChem 8, 878–885 (2015).

    Article  CAS  Google Scholar 

  141. Senkovska, I. et al. New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc = 2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc = 4,4′-biphenyl dicarboxylate) Microporous Mesoporous Mater. 122, 93–98 (2009).

    Article  CAS  Google Scholar 

  142. Bloch, E. D. et al. Metal insertion in a microporous metal-organic framework lined with 2,2′-bipyridine. J. Am. Chem. Soc. 132, 14382–14384 (2010).

    Article  CAS  Google Scholar 

  143. Gao, W.-Y. et al. Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions. Angew. Chem. Int. Ed. 53, 2615–2619 (2014).

    Article  CAS  Google Scholar 

  144. Darensbourg, D. J., Chung, W.-C., Wang, K. & Zhou, H.-C. Sequestering CO2 for short-term storage in MOFs: copolymer synthesis with oxiranes. ACS Catal. 4, 1511–1515 (2014).

    Article  CAS  Google Scholar 

  145. González-Zamora, E. & Ibarra, I. A. CO2 capture under humid conditions in metal-organic frameworks. Mater. Chem. Front.http://dx.doi.org/10.1039/c6qm00301j (2017).

  146. Drisdell, W. S. et al. Probing the mechanism of CO2 capture in diamine-appended metal-organic frameworks using measured and simulated X-ray spectroscopy. Phys. Chem. Chem. Phys. 17, 21448–21457 (2015).

    Article  CAS  Google Scholar 

  147. Queen, W. L. et al. Site-specific CO2 adsorption and zero thermal expansion in an isotropic pore network. J. Phys. Chem. C 115, 24915–24919 (2011).

    Article  CAS  Google Scholar 

  148. Lee, J. S. et al. Understanding small-molecule interactions in metal-organic frameworks: coupling experiment with theory. Adv. Mater. 27, 5785–5796 (2015).

    Article  CAS  Google Scholar 

  149. Schoedel, A., Ji, Z. & Yaghi, O. M. The role of metal-organic frameworks in a carbon-neutral energy cycle. Nat. Energy 1, 16034 (2016).

    Article  CAS  Google Scholar 

  150. Hassan Beyzavi, M. et al. A hafnium-based metal-organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. J. Am. Chem. Soc. 136, 15861–15864 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work related to this topic is funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Energy Frontier Research Center (DE-SC0001015) for adsorption and S. Aramco Carbon Capture and Utilization Chair Program at King Fahd University of Petroleum and Minerals for industrial considerations. The authors acknowledge collaborations with and support of S. Aramco (Project No. ORCP2390). Finally, the authors are grateful to K. Choi for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar M. Yaghi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

S1 (tables) (PDF 3265 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trickett, C., Helal, A., Al-Maythalony, B. et al. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat Rev Mater 2, 17045 (2017). https://doi.org/10.1038/natrevmats.2017.45

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2017.45

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing