Review Article

2D transition metal dichalcogenides

  • Nature Reviews Materials 2, Article number: 17033 (2017)
  • doi:10.1038/natrevmats.2017.33
  • Download Citation
Published online:

Abstract

Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin–orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties.

  • Subscribe to Nature Reviews Materials for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    , , , & Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

  2. 2.

    et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

  3. 3.

    , , , & Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  4. 4.

    & The crystal structure of molybdenite. J. Am. Chem. Soc. 45, 1466–1471 (1923).

  5. 5.

    & The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

  6. 6.

    & Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. A 273, 69–83 (1963).

  7. 7.

    , & Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986).

  8. 8.

    , , & Polyhedral and cylindrical structures of tungsten disulfide. Nature 360, 444–446 (1992).

  9. 9.

    , , & High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222–225 (1995).

  10. 10.

    et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

  11. 11.

    , , & Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

  12. 12.

    & Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016).

  13. 13.

    , , , & Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett. 16, 4837–4837 (2016).

  14. 14.

    , & Giant spin–orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).

  15. 15.

    et al. k · p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater. 2, 2053–1583 (2015).

  16. 16.

    , , , & Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

  17. 17.

    & Spin- and valley-polarized transport across line defects in monolayer MoS2. Phys. Rev. B 93, 041419 (2016).

  18. 18.

    & Spin-dependent refraction at the atomic step of transition-metal dichalcogenides. Phys. Rev. B 91, 201407 (2015).

  19. 19.

    Quantum Theory of Solids (Clarendon Press, 1955).

  20. 20.

    On the theory of superconductivity: the one-dimensional case. Proc. R. Soc. A 223, 305 (1954).

  21. 21.

    & Spin density wave and soft phonon mode from nesting Fermi surfaces. J. Phys. F Met. Phys. 3, 795–809 (1973).

  22. 22.

    Electronic structure of chromium group metals. Proc. Phys. Soc. 80, 489–496 (1962).

  23. 23.

    , & Charge-density waves in metallic, layered, transition-metal dichalcogenides. Phys. Rev. Lett. 37, C4-139–C4-150 (1974).

  24. 24.

    , & Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 50, 1171–1248 (2010).

  25. 25.

    , & Neutron scattering study of the charge-density wave transitions in 2H-TaSe2 and 2H-NbSe2. Phys. Rev. B 16, 801–819 (1977).

  26. 26.

    , & Charge-density waves in transition-metal compounds. Phys. Today 32, 32–38 (1979).

  27. 27.

    , & Superconductivity in the niobium–selenium system. J. Phys. Chem. Solids 26, 1029–1034 (1965).

  28. 28.

    , , , & Unexpected periodicity in the quasi-two-dimensional Mott insulator 1T-TaS2 revealed by angle-resolved photoemission. Phys. Rev. B 71, 153101 (2005).

  29. 29.

    et al. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 7, 960–965 (2008).

  30. 30.

    2D materials: charge density waves go nano. Nat. Nanotechnol. 10, 737–738 (2015).

  31. 31.

    , & Effect of dimensionality on the charge-density wave in few-layer 2H-NbSe2. Phys. Rev. B 80, 241108 (2009).

  32. 32.

    et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 10, 765–769 (2015).

  33. 33.

    et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 12, 92–97 (2016).

  34. 34.

    & Effect of dimensionality and spin–orbit coupling on charge-density-wave transition in 2H-TaSe2. Phys. Rev. B 86, 104101 (2012).

  35. 35.

    et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).

  36. 36.

    et al. Atomic lattice disorder in charge-density-wave phases of exfoliated dichalcogenides (1T-TaS2). Proc. Natl Acad. Sci. USA 113, 11424 (2016).

  37. 37.

    et al. Zone-center phonons of bulk, few-layer, and monolayer 1T-TaS2: detection of the commensurate charge density wave phase through Raman scattering. Phys. Rev. B 93, 214109 (2016).

  38. 38.

    et al. Unconventional charge-density-wave transition in monolayer 1T-TiSe2. ACS Nano 10, 1341–1345 (2016).

  39. 39.

    et al. Dimensional effects on the charge density waves in ultrathin films of TiSe2. Nano Lett. 16, 6331–6336 (2016).

  40. 40.

    Excitonic phases. Phys. Rev. Lett. 19, 439–442 (1967).

  41. 41.

    , & Excitonic insulator. Phys. Rev. 158, 462–475 (1967).

  42. 42.

    et al. Superconducting density of states and vortex cores of 2H-NbS2. Phys. Rev. Lett. 101, 166407 (2008).

  43. 43.

    et al. Charge-density-wave-induced modifications to the quasiparticle self-energy in 2H-TaSe2. Phys. Rev. Lett. 85, 4759–4762 (2000).

  44. 44.

    et al. Superconductivity in the layered compound 2H-TaS2. J. Phys. Chem. Solids 53, 1259–1263 (1992).

  45. 45.

    et al. Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2H-TaS2 and 2H-TaSe2. Phys. Rev. B 93, 184512 (2016).

  46. 46.

    , , , & Pressure induced superconductivity in pristine 1T-TiSe2. Phys. Rev. Lett. 103, 236401 (2009).

  47. 47.

    et al. Superconductivity in CuxTiSe2. Nat. Phys. 2, 544–550 (2006).

  48. 48.

    et al. Tuning the charge density wave and superconductivity in CuxTaS2. Phys. Rev. B 78, 104520 (2008).

  49. 49.

    et al. Charge-orbital density wave and superconductivity in the strong spin-orbit coupled IrTe2:Pd. Phys. Rev. Lett. 108, 116402 (2012).

  50. 50.

    & Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6, 1181–1203 (1973).

  51. 51.

    et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

  52. 52.

    et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).

  53. 53.

    , , , & Nodal topological superconductivity in monolayer NbSe2. Preprint at ArXiv (2016).

  54. 54.

    & Yu-Shiba-Rusinov states and topological superconductivity in Ising paired superconductors. Phys. Rev. B 94, 094515 (2016).

  55. 55.

    , , & Ising superconductivity and Majorana fermions in transition-metal dichalcogenides. Phys. Rev. B 93, 180501 (2016).

  56. 56.

    et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

  57. 57.

    , , & Gate-induced superconductivity in atomically thin MoS2 crystals. Nat. Nanotechnol. 11, 339–344 (2016).

  58. 58.

    et al. Superconductivity series in transition metal dichalcogenides by ionic gating. Sci. Rep. 5, 12534 (2015).

  59. 59.

    , , & Electrostatically induced superconductivity at the surface of WS2. Nano Lett. 15, 1197–1202 (2015).

  60. 60.

    & Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

  61. 61.

    & Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

  62. 62.

    , , & Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

  63. 63.

    , & Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

  64. 64.

    et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

  65. 65.

    , & Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 107, 136603 (2011).

  66. 66.

    et al. Topologically protected quantum transport in locally exfoliated bismuth at room temperature. Phys. Rev. Lett. 110, 176802 (2013).

  67. 67.

    et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014).

  68. 68.

    et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

  69. 69.

    , , , & Electronic structure basis for the extraordinary magnetoresistance in WTe2. Phys. Rev. Lett. 113, 216601 (2014).

  70. 70.

    et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

  71. 71.

    et al. MoTe2: a type-II Weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016).

  72. 72.

    , , , & Prediction of Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 92, 161107 (2015).

  73. 73.

    et al. Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 94, 121112 (2016).

  74. 74.

    et al. Fermi arcs and their topological character in the candidate type-II Weyl semimetal MoTe2. Phys. Rev. X 6, 031021 (2016).

  75. 75.

    - Electrical and modulation optical properties of 2H-MoSe2. Chin. J. Phys. 22, 43–53 (1984).

  76. 76.

    Chemical transport reactions. (Academic Press, 1964).

  77. 77.

    et al. Visibility of dichalcogenide nanolayers. Nanotechnology 22, 125706 (2011).

  78. 78.

    et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

  79. 79.

    et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

  80. 80.

    , , , & Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

  81. 81.

    Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides. Mater. Res. Bull. 10, 287–291 (1975).

  82. 82.

    et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).

  83. 83.

    et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011).

  84. 84.

    , , , & Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys. Rev. B 65, 125407 (2002).

  85. 85.

    et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

  86. 86.

    Molecular beam epitaxy. Rep. Prog. Phys. 48, 1637–1697 (1985).

  87. 87.

    & Ultrasharp interfaces grown with van der waals epitaxy. Surf. Sci. 174, 556–560 (1986).

  88. 88.

    , , , & Growth of MoSe2 thin-films with Van der Waals epitaxy. J. Cryst. Growth 111, 1033–1037 (1991).

  89. 89.

    , , & Van der Waals epitaxial growth and characterization of MoSe2 thin films on SnS2. J. Appl. Phys. 68, 2168–2175 (1990).

  90. 90.

    Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 201–202, 236–241 (1999).

  91. 91.

    et al. Large-area epitaxial monolayer MoS2. ACS Nano 9, 4611–4620 (2015).

  92. 92.

    et al. Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe2. ACS Nano 9, 3274–3283 (2015).

  93. 93.

    et al. Structural and electrical properties of MoTe2 and MoSe2 grown by molecular beam epitaxy. ACS Appl. Mater. Interfaces 8, 7396–7402 (2016).

  94. 94.

    et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

  95. 95.

    et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 12, 751–756 (2016).

  96. 96.

    et al. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals heterostructures. ACS Appl. Mater. Interfaces 8, 23222–23229 (2016).

  97. 97.

    et al. High-quality, large-area MoSe2 and MoSe2/Bi2Se3 heterostructures on AlN(0001)/Si(111) substrates by molecular beam epitaxy. Nanoscale 7, 7896–7905 (2015).

  98. 98.

    et al. Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and graphene. 2D Mater. 2, 024007 (2015).

  99. 99.

    , , , & Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

  100. 100.

    et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

  101. 101.

    et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012).

  102. 102.

    et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

  103. 103.

    et al. Vapor phase growth and grain boundary structure of molybdenum disulfide atomic layers. Nat. Mater. 12, 754–759 (2013).

  104. 104.

    et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).

  105. 105.

    , & Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett. 13, 253–258 (2012).

  106. 106.

    et al. Electrical transport properties of polycrystalline monolayer molybdenum disulfide. ACS Nano 8, 7930–7937 (2014).

  107. 107.

    , & WS2 thin films by metal organic chemical vapor deposition. J. Cryst. Growth 186, 137–150 (1998).

  108. 108.

    et al. Large-area MoS2 grown using H2S as the sulphur source. 2D Mater. 2, 044005 (2015).

  109. 109.

    et al. Highly scalable, atomically thin WSe2 grown via metal–organic chemical vapor deposition. ACS Nano 9, 2080–2087 (2015).

  110. 110.

    et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

  111. 111.

    et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 8, 5125–5131 (2014).

  112. 112.

    et al. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 6, 8949–8955 (2014).

  113. 113.

    et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 8, 8582–8590 (2014).

  114. 114.

    et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 6, 8569 (2015).

  115. 115.

    et al. Growth and optical properties of high-quality monolayer WS2 on graphite. ACS Nano 9, 4056–4063 (2015).

  116. 116.

    , , , & Synthesis of large-area WS2 monolayers with exceptional photoluminescence. Sci. Rep. 6, 19159 (2016).

  117. 117.

    et al. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano 8, 8273–8277 (2014).

  118. 118.

    et al. Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes. ACS Nano 10, 7866–7873 (2016).

  119. 119.

    et al. Band structure characterization of WS2 grown by chemical vapor deposition. Appl. Phys. Lett. 108, 252103 (2016).

  120. 120.

    et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 7, 8963–8971 (2013).

  121. 121.

    et al. Chemical vapor deposition of large-sized hexagonal WSe2 crystals on dielectric substrates. Adv. Mater. 27, 6722–6727 (2015).

  122. 122.

    et al. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 9, 6119–6127 (2015).

  123. 123.

    et al. Gate-optimized thermoelectric power factor in ultrathin WSe2 single crystals. Nano Lett. 16, 2061–2065 (2016).

  124. 124.

    et al. Chemical vapor deposition of monolayer rhenium disulfide (ReS2). Adv. Mater. 27, 4640–4648 (2015).

  125. 125.

    et al. Chemical vapor deposition of high-quality and atomically layered ReS2. Small 11, 5423–5429 (2015).

  126. 126.

    , , , & Large-area bilayer ReS2 film/multilayer ReS2 flakes synthesized by chemical vapor deposition for high performance photodetectors. Adv. Funct. Mater. 26, 4551–4560 (2016).

  127. 127.

    , , , & Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic raman property and optoelectronic application. Adv. Mater. 28, 8296–8301 (2016).

  128. 128.

    et al. Monolayer single-crystal 1T′-MoTe2 grown by chemical vapor deposition exhibits weak antilocalization effect. Nano Lett. 16, 4297–4304 (2016).

  129. 129.

    et al. Large-area and high-quality 2D transition metal telluride. Adv. Mat. 29, 1603471 (2017).

  130. 130.

    et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).

  131. 131.

    et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

  132. 132.

    et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

  133. 133.

    et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral p–n junction with an atomically sharp interface. Science 349, 524–528 (2015).

  134. 134.

    , & Carrier delocalization in two-dimensional coplanar p–n junctions of graphene and metal dichalcogenides. Nano Lett. 16, 5032–5036 (2016).

  135. 135.

    , & Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

  136. 136.

    , & Acoustic phonon limited mobility in two-dimensional semiconductors: deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys. Rev. B 87, 235312 (2013).

  137. 137.

    , , & Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 7, 1731–1737 (2014).

  138. 138.

    et al. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87, 115418 (2013).

  139. 139.

    & Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014).

  140. 140.

    & Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743–755 (1967).

  141. 141.

    & Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).

  142. 142.

    , , & Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett. 13, 4212–4216 (2013).

  143. 143.

    et al. Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28, 547–552 (2016).

  144. 144.

    et al. Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-c substrate. ACS Nano 8, 5079–5088 (2014).

  145. 145.

    et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

  146. 146.

    , & Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7, 3246–3252 (2013).

  147. 147.

    et al. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 5, 10699 (2015).

  148. 148.

    et al. Universal low-temperature Ohmic contacts for quantum transport in transition metal dichalcogenides. 2D Mater. 3, 021007 (2016).

  149. 149.

    , , , & Electrical transport properties of single-layer WS2. ACS Nano 8, 8174–8181 (2014).

  150. 150.

    et al. Shubnikov-de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

  151. 151.

    Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).

  152. 152.

    et al. State-of-the-art graphene high-frequency electronics. Nano Lett. 12, 3062–3067(2012).

  153. 153.

    , & How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768–3773 (2011).

  154. 154.

    , , , & MoS2 transistors operating at gigahertz frequencies. Nano Lett. 14, 5905–5911 (2014).

  155. 155.

    , , , & High-frequency, scaled MoS2 transistors. IEEE Int. Electron Devices Meet. (2015).

  156. 156.

    et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014).

  157. 157.

    et al. Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime. Adv. Mater. 28, 1818–1823 (2015).

  158. 158.

    et al. 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics. Small 6, 2553–2557 (2010).

  159. 159.

    et al. Self-aligned, extremely high frequency III–V metal–oxide-semiconductor field-effect transistors on rigid and flexible substrates. Nano Lett. 12, 4140–4145 (2012).

  160. 160.

    , & Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011).

  161. 161.

    et al. Uniaxial strain on graphene: raman spectroscopy study and band-gap opening. ACS Nano 2, 2301–2305 (2008).

  162. 162.

    , & Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009).

  163. 163.

    & Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6, 5449–5456 (2012).

  164. 164.

    et al. Mechanical and electronic properties of monolayer MoS2 under elastic strain. Phys. Lett. A 376, 1166–1170 (2012).

  165. 165.

    , , & Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys. Rev. B 87, 155304 (2013).

  166. 166.

    , , , & Theoretical study on strain-induced variations in electronic properties of monolayer MoS2. J. Mater. Sci. 49, 6762–6771 (2014).

  167. 167.

    , , & Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B 87, 235434 (2013).

  168. 168.

    , & Computational study on electrical properties of transition metal dichalcogenide field-effect transistors with strained channel. J. Appl. Phys. 115, 034505 (2014).

  169. 169.

    et al. Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2. Phys. Rev. B 87, 125415 (2013).

  170. 170.

    , , & Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 14, 13035–13040 (2012).

  171. 171.

    , , , & First-principles study of strained 2D MoS2. Phys. E 56, 416–421 (2014).

  172. 172.

    , & Many-body and spin–orbit effects on direct-indirect band gap transition of strained monolayer MoS2 and WS2: direct-indirect band gap transition in strained monolayer MoS2 and WS2. Ann. Phys. 526, L7–L12 (2014).

  173. 173.

    & Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2 (X = S, Se, Te). Phys. B (Amsterdam, Neth.) 419, 66–75 (2013).

  174. 174.

    , & Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS2. Nanotechnology 25, 465701 (2014).

  175. 175.

    et al. Thermal conductivity of biaxial-strained MoS2: sensitive strain dependence and size-dependent reduction rate. Nanotechnology 26, 465707 (2015).

  176. 176.

    , , , & Theory of strain in single-layer transition metal dichalcogenides. Phys. Rev. B 92, 195402 (2015).

  177. 177.

    , , & Strain effects on the spin–orbit-induced band structure splittings in monolayer MoS2 and graphene. Phys. Rev. B 88, 155404 (2013).

  178. 178.

    , & Density-functional tight-binding simulations of curvature-controlled layer decoupling and band-gap tuning in bilayer MoS2. Phys. Rev. Lett. 112, 186802 (2014).

  179. 179.

    , & Performance analysis of strained monolayer MoS2 MOSFET. IEEE Trans. Electron. Devices 60, 2782–2787 (2013).

  180. 180.

    , , , & A first-principles study on the effect of biaxial strain on the ultimate performance of monolayer MoS2-based double gate field effect transistor. J. Appl. Phys. 113, 163708 (2013).

  181. 181.

    , , & Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 6, 866–872 (2012).

  182. 182.

    , , , & Elastic deformations in 2D van der waals heterostructures and their impact on optoelectronic properties: predictions from a multiscale computational approach. Sci. Rep. 5, 10872 (2015).

  183. 183.

    , , & Strain and electric field induced electronic properties of two-dimensional hybrid bilayers of transition-metal dichalcogenides. J. Appl. Phys. 116, 063711 (2014).

  184. 184.

    et al. Strain-engineering the anisotropic electrical conductance in ReS2 monolayer. Appl. Phys. Lett. 108, 191901 (2016).

  185. 185.

    , , & Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett. 15, 5330–5335 (2015).

  186. 186.

    et al. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 10, 151–155 (2015).

  187. 187.

    et al. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 16, 5836–5841 (2016).

  188. 188.

    et al. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015).

  189. 189.

    et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013).

  190. 190.

    , , & Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13, 2931–2936 (2013).

  191. 191.

    et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 88, 121301 (2013).

  192. 192.

    et al. Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361–5366 (2013).

  193. 193.

    et al. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater. 2, 015006 (2015).

  194. 194.

    et al. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7, 7126–7131 (2013).

  195. 195.

    et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 5, 5246 (2014).

  196. 196.

    et al. Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys. Rev. B 87, 081307 (2013).

  197. 197.

    et al. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 14, 4592–4597 (2014).

  198. 198.

    et al. Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain. Nanoscale 8, 2589–2593 (2016).

  199. 199.

    , & Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012).

  200. 200.

    , , & Ab-initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9, 9885–9891 (2015).

  201. 201.

    et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).

  202. 202.

    Piezoresistance effect of silicon. Sens. Actuators Phys. 28, 83–91 (1991).

  203. 203.

    et al. Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett. 13, 3237–3242 (2013).

  204. 204.

    , , , & Electronic—mechanical coupling in graphene from in situ nanoindentation experiments and multiscale atomistic simulations. Nano Lett. 11, 1241–1246 (2011).

  205. 205.

    Silicon as a mechanical material. Proc. IEEE 70, 420–457 (1982).

  206. 206.

    et al. Pathway to the piezoelectronic transduction logic device. Nano Lett. 15, 2391–2395 (2015).

  207. 207.

    , , & A low-voltage high-speed electronic switch based on piezoelectric transduction. J. Appl. Phys. 111, 084509 (2012).

  208. 208.

    et al. Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics. Adv. Mater. 28, 8463–8468 (2016).

  209. 209.

    et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012).

  210. 210.

    et al. High-performance, highly bendable MoS2 transistors with high-K dielectrics for flexible low-power systems. ACS Nano 7, 5446–5452 (2013).

  211. 211.

    et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7, 7931–7936 (2013).

  212. 212.

    , & Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

  213. 213.

    et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 9, 3295–3300 (2013).

  214. 214.

    et al. Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics. Appl. Phys. Lett. 103, 023505 (2013).

  215. 215.

    , & Strain engineering for transition metal dichalcogenides based field effect transistors. ACS Nano 10, 4712–4718 (2016).

  216. 216.

    et al. Flexible MoS2 field-effect transistors for gate-tunable piezoresistive strain sensors. ACS Appl. Mater. Interfaces 7, 12850–12855 (2015).

  217. 217.

    et al. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 28, 4111–4119 (2016).

  218. 218.

    et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015).

  219. 219.

    et al. Electrochemical reaction in single layer MoS2: nanopores opened atom by atom. Nano Lett. 15, 3431–3438 (2015).

  220. 220.

    et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 14, 1909–1913 (2014).

Download references

Acknowledgements

This work was financially supported by the European Research Council (Grant Nos. 682332 and 306504), Swiss National Science Foundation (Grant No. 153298), funding from the Single Nanometre Manufacturing project under the European Union's Seventh Framework Programme FP7/2007-2013 (Grant Agreement No. 318804), Marie Curie ITN network ‘MoWSeS’ (Grant No. 317451). We acknowledge funding by the European Commission under the Graphene Flagship (Grant Agreement No. 604391).

Author information

Affiliations

  1. Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

    • Sajedeh Manzeli
    • , Dmitry Ovchinnikov
    •  & Andras Kis
  2. Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

    • Sajedeh Manzeli
    • , Dmitry Ovchinnikov
    •  & Andras Kis
  3. Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

    • Diego Pasquier
    •  & Oleg V. Yazyev

Authors

  1. Search for Sajedeh Manzeli in:

  2. Search for Dmitry Ovchinnikov in:

  3. Search for Diego Pasquier in:

  4. Search for Oleg V. Yazyev in:

  5. Search for Andras Kis in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Andras Kis.