Review Article

Transport of ions and electrons in nanostructured liquid crystals

  • Nature Reviews Materials 2, Article number: 17001 (2017)
  • doi:10.1038/natrevmats.2017.1
  • Download Citation
Published online:

Abstract

The nanosegregated structures of columnar, smectic and bicontinuous cubic liquid crystals can provide well-organized, nano- and sub-nanosized 1D, 2D and 3D channels capable of ion and electron transport. The molecular shape, intermolecular interactions and nanosegregation of the molecular structures can influence their self-assembly into a range of functional liquid-crystalline nanostructures. The formation of stable and soft liquid-crystalline materials leads to their application as electrolytes for batteries and photovoltaics, semiconductors, electroluminescence and electrochemical devices. In addition, electrochemical devices are obtained by using redox-active liquid crystals. In this Review, we focus on the design of liquid-crystalline phases, the resultant self-assembled structures, the transport mechanisms, and the fabrication, function and future development of devices incorporating nanostructured liquid crystals.

  • Subscribe to Nature Reviews Materials for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    et al. (eds) Handbook of Liquid Crystals 2nd edn (Wiley, 2014).

  2. 2.

    & The Physics of Liquid Crystals 2nd edn (Oxford Univ. Press, 1993).

  3. 3.

    , & Functional liquid-crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed. 45, 38–68 (2006).

  4. 4.

    Development of structural complexity by liquid-crystal self-assembly. Angew. Chem. Int. Ed. 52, 8828–8878 (2013).

  5. 5.

    , & Discotic liquid crystals: a new generation of organic semiconductors. Chem. Soc. Rev. 36, 1902–1929 (2007).

  6. 6.

    et al. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev. 109, 6275–6540 (2009).

  7. 7.

    Self-assembly of phase-segregated liquid crystal structures. Science 295, 2414–2418 (2002).

  8. 8.

    & Mechanically induced luminescence changes in molecular assemblies. Nat. Chem. 1, 605–610 (2009).

  9. 9.

    et al. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009).

  10. 10.

    , , & Thienoacene-based organic semiconductors. Adv. Mater. 23, 4347–4370 (2011).

  11. 11.

    Perspectives in chemistry — steps towards complex matter. Angew. Chem. Int. Ed. 52, 2836–2850 (2013).

  12. 12.

    (ed.) Supramolecular Soft Matter: Applications in Materials and Organic Electronics (Wiley, 2011).

  13. 13.

    Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem. 41, 525–557 (1990).

  14. 14.

    & Functional materials based on self-assembly of polymeric supramolecules. Science 295, 2407–2409 (2002).

  15. 15.

    , & Directed bending of a polymer film by light. Nature 425, 145 (2003).

  16. 16.

    Nematic liquid crystals and twisted-nematic LCDs. Liq. Cryst. 42, 646–652 (2015).

  17. 17.

    & New family of nematic liquid crystals for displays. Electron. Lett. 9, 130–131 (1973).

  18. 18.

    & Process for the production of a highly orientable, crystallizable, filament forming polyamide. US Patent 3287323 (1966).

  19. 19.

    Beiträge zur kenntniss des cholesterins. Monatsh. Chem. 9, 421–441 (1888).

  20. 20.

    Verhalten der salze organischer säuren beim schmelzen. Ber. Dtsch. Chem. Ges. 43, 3120–3135 (1910).

  21. 21.

    Ionic liquid crystals. Chem. Rev. 105, 4148–4204 (2005).

  22. 22.

    & Liquid crystal polymers with flexible spacers in the main chain. Adv. Polym. Sci. 59, 103–146 (1985).

  23. 23.

    , & Model considerations and examples of enantiotropic liquid crystalline polymers. Makromol. Chem. 179, 273–276 (1978).

  24. 24.

    & Liquid crystals that affected the world: discotic liquid crystals. Liq. Cryst. 38, 1415–1426 (2011).

  25. 25.

    & in Handbook of Liquid Crystals Vol. 8 Ch. 23 (eds et al.) (Wiley, 2014).

  26. 26.

    et al. Liquid-crystalline electrolytes for lithium-ion batteries: ordered assemblies of a mesogen-containing carbonate and a lithium salt. Adv. Funct. Mater. 25, 1206–1212 (2015).

  27. 27.

    et al. Effect of varying the composition and nanostructure of organic carbonate-containing lyotropic liquid crystal polymer electrolytes on their ionic conductivity. Polym. J. 48, 635–643 (2016).

  28. 28.

    et al. Ionic liquid crystal as a hole transport layer of dye-sensitized solar cells. Chem. Commun. 740–742 (2005).

  29. 29.

    et al. Beneficial effects of liquid crystalline phases in solid-state dye-sensitized solar cells. Adv. Energy Mater. 3, 657–665 (2013).

  30. 30.

    et al. Nanostructured two-component liquid-crystalline electrolytes for high-temperature dye-sensitized solar cells. Chem. Mater. 26, 6496–6502 (2014).

  31. 31.

    et al. Liquid-crystalline dye-sensitized solar cells: design of two-dimensional molecular assemblies for efficient ion transport and thermal stability. Chem. Mater. 28, 6493–6500 (2016).

  32. 32.

    et al. Membranes containing oriented supramolecular transport channels. Adv. Mater. 12, 513–516 (2000).

  33. 33.

    et al. Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation. Adv. Mater. 24, 2238–2241 (2012).

  34. 34.

    et al. New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly. J. Am. Chem. Soc. 129, 9574–9575 (2007).

  35. 35.

    & Building better batteries. Nature 451, 625–657 (2008).

  36. 36.

    et al. Safer electrolytes for lithium-ion batteries: state of the art and perspectives. ChemSusChem 8, 2154–2175 (2015).

  37. 37.

    et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).

  38. 38.

    Developments in polymer electrolytes for lithium batteries. MRS Bull. 27, 597–602 (2002).

  39. 39.

    , , , & Discotic mesophases obtained from substituted metallophthalocyanines. Toward liquid crystalline one-dimensional conductors. J. Am. Chem. Soc. 104, 5245–5247 (1982).

  40. 40.

    From nanostructured liquid crystals to polymer-based electrolytes. Angew. Chem. Int. Ed. 49, 7847–7848 (2010).

  41. 41.

    et al. One-dimensional electronic conductivity in discotic liquid crystals. Chem. Phys. Lett. 152, 94–99 (1988).

  42. 42.

    et al. Transient photoconductivity in a discotic liquid crystal. Phys. Rev. Lett. 70, 457–460 (1993).

  43. 43.

    et al. Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature 371, 141–143 (1994).

  44. 44.

    et al. Dihexylquaterthiophene, a two-dimensional liquid crystal-like organic semiconductor with high transport properties. Chem. Mater. 10, 3334–3339 (1998).

  45. 45.

    et al. Tuning of the semiconducting properties of sexithiophene by α, ω-substitution— α-ω-diperfluorohexylsexithiophene: the first n-type sexithiophene for thin-film transistors. Angew. Chem. Int. Ed. 39, 4547–4551 (2000).

  46. 46.

    & in Handbook of Liquid Crystals Vol. 8 Ch. 20 (eds et al.) (Wiley, 2014).

  47. 47.

    & Ordered materials for organic electronics and photonics. Adv. Mater. 23, 566–584 (2011).

  48. 48.

    & New approach to mesophase stabilization through hydrogen-bonding molecular interactions in binary mixtures. J. Am. Chem. Soc. 111, 8533–8534 (1989).

  49. 49.

    , & Hydrogen-bonded liquid crystalline materials: supramolecular polymeric assembly and the induction of dynamic function. Macromol. Rapid Commun. 22, 797–814 (2001).

  50. 50.

    et al. Structure and conductivity of liquid crystal channel-like ionic complexes of taper-shaped compounds. Adv. Mater. Opt. Electron. 4, 303–313 (1994).

  51. 51.

    et al. Molecular recognition directed self -assembly of supramolecular cylindrical channel-like architectures from 6,7,9,10,12,13,15,16-octahydro-l, 4,7,10,l3-pentaoxabenzocyclopentadecen-2-ylmethyl 3,4,5-tris(p-dodecyloxybenzyloxy)benzoate. J. Chem. Soc., Perkin Trans. 1 1411–1420 (1993).

  52. 52.

    , & Synthesis of a crowned azobenzene liquid crystal and its application to thermoresponsive ion-conducting films. J. Mater. Chem. 1, 293–294 (1991).

  53. 53.

    The structure of ion channels in membranes of excitable cells. Neuron 3, 665–676 (1989).

  54. 54.

    & Synthetic ion channels. Langmuir 29, 9031–9040 (2013).

  55. 55.

    , & Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources 77, 183–197 (1999).

  56. 56.

    Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10, 439–448 (1998).

  57. 57.

    et al. Synthesis and supramolecular chemistry of novel liquid crystalline crown ether-substituted phthalocyanines: toward molecular wires and molecular ionoelectronics. J. Am. Chem. Soc. 117, 9957–9965 (1995).

  58. 58.

    et al. Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(n-dodecan-1-yloxy)benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar hexagonal mesophase. J. Chem. Soc., Perkin Trans. 2 31–44 (1994).

  59. 59.

    et al. Liquid-crystalline complexes of a lithium salt with twin oligomers containing oxyethylene spacers. An approach to anisotropic ion conduction. Polym. J. 31, 1155–1158 (1999).

  60. 60.

    et al. Liquid-crystalline complexes of mesogenic dimers containing oxyethylene moieties with LiCF3SO3: self-organized ion conductive materials. Chem. Mater. 12, 782–789 (2000).

  61. 61.

    et al. Layered ionic liquids: anisotropic ion conduction in new self-organized liquid-crystalline materials. Adv. Mater. 14, 351–354 (2002).

  62. 62.

    et al. Noncovalent approach to one-dimensional ion conductors: enhancement of ionic conductivities in nanostructured columnar liquid crystals. J. Am. Chem. Soc. 130, 1759–1765 (2008).

  63. 63.

    , , & Ionic liquid crystals: versatile materials. Chem. Rev. 116, 4643–4807 (2016).

  64. 64.

    & in Electrochemical Aspects of Ionic Liquids 1st edn (ed. ) 307–320 (Wiley, 2005).

  65. 65.

    & in Handbook of Liquid Crystals Vol. 6 Ch. 8 (eds et al.) (Wiley, 2014).

  66. 66.

    et al. One-dimensional ion transport in self-organized columnar ionic liquids. J. Am. Chem. Soc. 126, 994–995 (2004).

  67. 67.

    et al. Columnar liquid-crystalline imidazolium salts. Effects of anions and cations on mesomorphic properties and ionic conductivity. Bull. Chem. Soc. Jpn 80, 1836–1841 (2007).

  68. 68.

    et al. in Ionic Liquids IV: Not Just Solvents Anymore ACS Symp. Ser. Vol. 975 161–171 (American Chemical Society, 2007).

  69. 69.

    et al. One-dimensional ion-conductive polymer films: alignment and fixation of ionic channels formed by self-organization of liquid crystals. J. Am. Chem. Soc. 128, 5570–5577 (2006).

  70. 70.

    et al. Self-organization of room-temperature ionic liquids exhibiting liquid-crystalline bicontinuous cubic phases: formation of nano-ion channel networks. J. Am. Chem. Soc. 129, 10662–10663 (2007).

  71. 71.

    et al. Ion conductive behaviour in a confined nanostructure: NMR observation of self-diffusion in a liquid-crystalline bicontinuous cubic phase. Chem. Commun. 46, 728–730 (2010).

  72. 72.

    et al. 3D interconnected ionic nano-channels formed in polymer films: self-organization and polymerization of thermotropic bicontinuous cubic liquid crystals. J. Am. Chem. Soc. 133, 2163–2169 (2011).

  73. 73.

    et al. Induction of thermotropic bicontinuous cubic phases in liquid-crystalline ammonium and phosphonium salts. J. Am. Chem. Soc. 134, 2634–2643 (2012).

  74. 74.

    et al. Ionic switch induced by a rectangular-hexagonal phase transition in benzenammonium columnar liquid crystals. J. Am. Chem. Soc. 137, 13212–13215 (2015).

  75. 75.

    et al. Anisotropic proton-conductive materials formed by the self-organization of phosphonium-type zwitterions. Adv. Mater. 23, 3071–3074 (2011).

  76. 76.

    et al. 3D anhydrous proton-transporting nanochannels formed by self-assembly of liquid crystals composed of a sulfobetaine and a sulfonic acid. J. Am. Chem. Soc. 135, 15286–15289 (2013).

  77. 77.

    et al. Synthesis and lyotropic liquid crystalline behaviour of a taper-shaped phosphonic acid amphiphile. Liq. Cryst. 29, 1151–1159 (2002).

  78. 78.

    et al. Novel high proton conductive material from liquid crystalline 4-(octadecyloxy)phenylsulfonic acid. J. Mater. Chem. 20, 6245–6249 (2010).

  79. 79.

    , , , & Anisotropic ionic conduction in a magnetically aligned liquid crystalline polymer electrolyte. Electrochim. Acta 43, 1239–1245 (1998).

  80. 80.

    , & Ion transport in glassy side-group liquid crystalline polymer electrolytes. Adv. Mater. 11, 832–834 (1999).

  81. 81.

    et al. Anisotropic ionic conductivity in fluorinated ionic liquid crystals suitable for optoelectronic applications. J. Mater. Chem. A 1, 6572–6578 (2013).

  82. 82.

    et al. Dye-sensitized TiO2 solar cells using imidazolium-type ionic liquid crystal systems as effective electrolytes. J. Phys. Chem. B 111, 4763–4769 (2007).

  83. 83.

    & A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

  84. 84.

    et al. Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010).

  85. 85.

    et al. Co-organisation of ionic liquids with amphiphilic diethanolamines: construction of 3D continuous ionic nanochannels through the induction of liquid-crystalline bicontinuous cubic phases. Chem. Sci. 3, 2001–2008 (2012).

  86. 86.

    et al. Designer lyotropic liquid-crystalline systems containing amino acid ionic liquids as self-organisation media of amphiphiles. Chem. Commun. 49, 11746–11748 (2013).

  87. 87.

    et al. Columnar nanostructured polymer films containing ionic liquids in supramolecular one-dimensional nanochannels. J. Polym. Sci. A Polym. Chem. 53, 366–371 (2014).

  88. 88.

    et al. 2D assemblies of ionic liquid crystals based on imidazolium moieties: formation of ion-conductive layers. New J. Chem. 39, 4471–4477 (2015).

  89. 89.

    et al. Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 305, 1598–1601 (2004).

  90. 90.

    Spontaneous bulk organization of molecular assemblers based on aliphatic polyether and/or poly(benzyl ether) dendrons. Polym. J. 44, 475–489 (2012).

  91. 91.

    Nanostructured organic electrolytes. RSC Adv. 4, 395–405 (2014).

  92. 92.

    , , , & New type of Li ion conductor with 3D interconnected nanopores via polymerization of a liquid organic electrolyte-filled lyotropic liquid-crystal assembly. J. Am. Chem. Soc. 131, 15972–15973 (2009).

  93. 93.

    et al. Uniaxially parallel alignment of a smectic A liquid-crystalline rod–coil molecule and its lithium salt complexes using rubbed polyimides. Macromolecules 40, 4874–4878 (2007).

  94. 94.

    et al. Macroscopic photocontrol of ion-transporting pathways of a nanostructured imidazolium-based photoresponsive liquid crystal. J. Am. Chem. Soc. 136, 9552–9555 (2014).

  95. 95.

    et al. Anisotropic ion conductivity in liquid crystalline diblock copolymer membranes with perpendicularly oriented PEO cylindrical domains. Macromolecules 40, 8125–8128 (2007).

  96. 96.

    et al. Ion conductive properties in ionic liquid crystalline phases confined in a porous membrane. J. Mater. Chem. C 3, 6144–6147 (2015).

  97. 97.

    et al. Electric-field-responsive lithium-ion conductors of propylenecarbonate-based columnar liquid crystals. Adv. Mater. 21, 1591–1594 (2009).

  98. 98.

    et al. Scalable fabrication of polymer membranes with vertically aligned 1-nm pores by magnetic field directed self-assembly. ACS Nano 8, 11977–11986 (2014).

  99. 99.

    et al. Thin polymer films with continuous vertically aligned 1 nm pores fabricated by soft confinement. ACS Nano 10, 150–158 (2016).

  100. 100.

    et al. Nanostructured anisotropic ion-conductive films. J. Am. Chem. Soc. 125, 3196–3197 (2003).

  101. 101.

    et al. A nano-segregated polymeric film exhibiting high ionic conductivities. J. Am. Chem. Soc. 127, 15618–15623 (2005).

  102. 102.

    et al. Nanostructured ion-conductive films: layered assembly of a side-chain liquid-crystalline polymer with an imidazolium ionic moiety. J. Polym. Sci. A Polym. Chem. 41, 3486–3492 (2003).

  103. 103.

    et al. From channel-forming ionic liquid crystals exhibiting humidity-induced phase transitions to nanostructured ion-conducting polymer membranes. Adv. Mater. 25, 3543–3548 (2013).

  104. 104.

    & 3D continuous water nanosheet as a gyroid minimal surface formed by bicontinuous cubic liquid-crystalline zwitterions. J. Am. Chem. Soc. 134, 11354–11357 (2012).

  105. 105.

    et al. Self-assembled N-alkylimidazolium perfluorooctanesulfonates. Chem. Lett. 34, 442–443 (2005).

  106. 106.

    , & Effects of alkyl chain length on properties of 1-alkyl-3-methylimidazolium fluorohydrogenate ionic liquid crystals. Chem. Eur. J. 16, 12970–12976 (2010).

  107. 107.

    , & Phase behavior of 1-dodecyl-3-methylimidazolium fluorohydrogenate salts (C12MIm(FH)n F, n = 1.0–2.3) and their anisotropic ionic conductivity as ionic liquid crystal electrolytes. J. Phys. Chem. B 116, 10106–10112 (2012).

  108. 108.

    et al. Syntheses, characterizations and electrochemical properties of mesomorphic 4-(4′-alkoxy-(1,1′-biphenyl)-4-oxy)butane-1-sulfonic acids. J. Mol. Struct. 1045, 15–19 (2013).

  109. 109.

    et al. Proton conduction in discotic mesogens. Chem. Commun. 47, 5566–5568 (2011).

  110. 110.

    et al. Highly proton conductive phosphoric acid–non ionic surfactant lyotropic liquid crystalline mesophases and applications in graphene optical modulators. ACS Nano 8, 11007–11012 (2014).

  111. 111.

    & Designing the next generation of chemical separation membranes. Science. 332, 674–676 (2011).

  112. 112.

    et al. Water filtration performance of a lyotropic liquid crystal polymer membrane with uniform, sub-1-nm pores. J. Membr. Sci. 366, 62–72 (2011).

  113. 113.

    et al. Block copolymer permeable membrane with visualized high-density straight channels of poly(ethylene oxide). Adv. Funct. Mater. 21, 918–926 (2011).

  114. 114.

    et al. Relationship between core size, side chain length, and the supramolecular organization of polycyclic aromatic hydrocarbons. Chem. Mater. 17, 4296–4303 (2005).

  115. 115.

    , , , & Rapid charge transport along self-assembling graphitic nanowires. Adv. Mater. 10, 36–38 (1998).

  116. 116.

    , , & Complementary C3-symmetric donor–acceptor components: cocrystal structure and control of mesophase stability. J. Am. Chem. Soc. 125, 10586–10590 (2003).

  117. 117.

    et al. Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nat. Mater. 8, 421–426 (2009).

  118. 118.

    et al. Enhanced hole transporting behavior of discotic liquid-crystalline physical gels. Adv. Funct. Mater. 18, 1668–1675 (2008).

  119. 119.

    , , , & Electro-functional octupolar π -conjugated columnar liquid crystals. J. Am. Chem. Soc. 133, 13437–13444 (2011).

  120. 120.

    , , , & A planarized triphenylborane mesogen: discotic liquid crystals with ambipolar charge-carrier transport properties. Angew. Chem. Int. Ed. 54, 6922–6925 (2015).

  121. 121.

    , , , & Charge migration in supramolecular stacks of peripherally substituted porphyrins. Nature 353, 736–737 (1991).

  122. 122.

    et al. Novel photocurrent rectification behaviour for a photoconductive cell using the mesogenic 5,10,15,20-tetrakis(4-n-pentadecylphenyl)porphyrin. J. Chem. Soc., Chem. Commun. 656–658 (1993).

  123. 123.

    et al. Toward ultralow-bandgap liquid crystalline semiconductors: use of triply fused metalloporphyrin trimer–pentamer as extra-large π-extended mesogenic motifs. Chem. Eur. J. 18, 10554–10561 (2012).

  124. 124.

    et al. Electron- or hole-transporting nature selected by side-chain-directed π-stacking geometry: liquid crystalline fused metalloporphyrin dimers. J. Am. Chem. Soc. 133, 6537–6540 (2011).

  125. 125.

    et al. π-Conjugated oligothiophene-based polycatenar liquid crystals: self-organization and photoconductive, luminescent, and redox properties. Adv. Funct. Mater. 19, 411–419 (2009).

  126. 126.

    et al. High electron mobility in room-temperature discotic liquid-crystalline perylene diimides. Adv. Mater. 17, 2580–2583 (2005).

  127. 127.

    , , & Liquid-crystalline perylene tetracarboxylic bisimide derivatives bearing cyclotetrasiloxane moieties. J. Mater. Chem. C 1, 7872–7878 (2013).

  128. 128.

    & Electron transport characteristics in nanosegregated columnar phases of perylene tetracarboxylic bisimide derivatives bearing oligosiloxane chains. Phys. Chem. Chem. Phys. 16, 7754–7763 (2014).

  129. 129.

    , & A liquid-crystalline perylene tetracarboxylic bisimide derivative bearing trisiloxan-2-yl moieties: influence on mesomorphic property and electron transport. RSC Adv. 6, 18703–18710 (2016).

  130. 130.

    & Fast ambipolar carrier transport in smectic phases of phenylnaphthalene liquid crystal. Appl. Phys. Lett. 71, 602–604 (1997).

  131. 131.

    & High ambipolar carrier mobility in self-organizing terthiophene derivative. Appl. Phys. Lett. 76, 2574–2576 (2000).

  132. 132.

    & High carrier mobility up to 0.1 cm2 V−1 s−1 at ambient temperatures in thiophene-based smectic liquid crystals. Adv. Mater. 17, 594–598 (2005).

  133. 133.

    , & Flexible field-effect transistors from a liquid crystalline semiconductor by solution processes. Org. Electron. 11, 363–368 (2010).

  134. 134.

    et al. A thiophene liquid crystal as a novel π-conjugated dye for photo-manipulation of molecular alignment. Adv. Mater. 12, 1336–1339 (2000).

  135. 135.

    et al. Large area liquid crystal monodomain field-effect transistors. J. Am. Chem. Soc. 128, 2336–2345 (2006).

  136. 136.

    et al. High carrier mobility of organic field-effect transistors with a thiophene–naphthalene mesomorphic semiconductor. Adv. Mater. 19, 1864–1868 (2007).

  137. 137.

    & Availability of liquid crystallinity in solution processing for polycrystalline thin films. Adv. Mater. 23, 1748–1751 (2011).

  138. 138.

    , & Liquid crystals for organic thin-film transistors. Nat. Commun. 6, 6828 (2015).

  139. 139.

    et al. A full-color electroluminescent device and patterned photoalignment using light-emitting liquid crystals. Adv. Mater. 17, 1368–1372 (2005).

  140. 140.

    et al. A molecular nematic liquid crystalline material for high-performance organic photovoltaics. Nat. Commun. 6, 6013 (2015).

  141. 141.

    et al. Electronic charge transport in extended nematic liquid crystals. Chem. Mater. 18, 2311–2317 (2006).

  142. 142.

    , , & Electronic conduction in nematic phase of small molecules. Phys. Rev. B 79, 033201 (2009).

  143. 143.

    , , , & Hole transport of a liquid-crystalline phenylterthiophene derivative exhibiting the nematic phase at ambient temperature. Chem. Lett. 40, 412–413 (2011).

  144. 144.

    & Effect of pretransitional organization in chiral nematic of oligothiophene derivatives on their carrier transport characteristics. Chem. Mater. 19, 608–617 (2007).

  145. 145.

    & Electronic conduction in the chiral nematic phase of an oligothiophene derivative. ChemPhysChem 7, 1193–1197 (2006).

  146. 146.

    & Organic semiconductors with helical structure based on oligothiophene derivatives exhibiting chiral nematic phase. Mol. Cryst. Liq. Cryst. 475, 123–135 (2007).

  147. 147.

    & Circularly polarized light emission from a chiral nematic phenylterthiophene dimer exhibiting ambipolar carrier transport. J. Mater. Chem. C 3, 6891–6900 (2015).

  148. 148.

    Chirality transfer in ferroelectric liquid crystals. Acc. Chem. Res. 34, 845–853 (2001).

  149. 149.

    , & Ferroelectric liquid-crystalline semiconductors based on a phenylterthiophene skeleton: effect of the introduction of oligosiloxane moieties and photovoltaic effect. J. Mater. Chem. C 3, 1982–1993 (2015).

  150. 150.

    et al. Fluorescent ferroelectrics of hydrogen-bonded pyrene derivatives. J. Phys. Chem. Lett. 6, 1813–1818 (2015).

  151. 151.

    & Electronic Processes in Organic Semiconductors: An Introduction (Wiley, 2015).

  152. 152.

    et al. Integrated materials design of organic semiconductors for field effect transistors. J. Am. Chem. Soc. 135, 6724–6746 (2013).

  153. 153.

    & Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 107, 953–1010 (2007).

  154. 154.

    Molecular bulk heterojunctions: an emerging approach to organic solar cells. Acc. Chem. Res. 42, 1719–1730 (2009).

  155. 155.

    , & High ambipolar mobility in a highly ordered smectic phase of a dialkylphenylterthiophene derivative that can be applied to solution-processed organic field-effect transistors. Adv. Mater. 19, 353–358 (2007).

  156. 156.

    et al. A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-hexabenzocoronene. Adv. Mater. 17, 684–689 (2005).

  157. 157.

    et al. Meso-epitaxial solution-growth of self-organizing discotic liquid-crystalline semiconductors. Adv. Mater. 15, 495–499 (2003).

  158. 158.

    et al. Uniaxial alignment of the columnar super-structure of a hexa (alkyl) hexa-peri-hexabenzocoronene on untreated glass by simple solution processing. J. Am. Chem. Soc. 125, 1682–1683 (2003).

  159. 159.

    et al. High anisotropy of the field-effect transistor mobility in magnetically aligned discotic liquid-crystalline semiconductors. J. Am. Chem. Soc. 127, 16233–16237 (2005).

  160. 160.

    & Availability of liquid crystalline molecules for polycrystalline organic semiconductor thin films. Jpn J. Appl. Phys. 45, L867–L870 (2006).

  161. 161.

    , & Solution-processible organic semiconductors based on selenophene-containing heteroarenes, 2,7-dialkyl[1] benzoselenopheno[3,2-b ][1]benzoselenophenes (Cn-BSBSs): syntheses, properties, molecular arrangements, and field-effect transistor characteristics. Chem. Mater. 21, 903–912 (2009).

  162. 162.

    et al. Patternable solution-crystallized organic transistors with high charge carrier mobility. Adv. Mater. 23, 1626–1629 (2011).

  163. 163.

    et al. Naphtho[2,1-b:6,5-b′]difuran: a versatile motif available for solution-processed single-crystal organic field-effect transistors with high hole mobility. J. Am. Chem. Soc. 134, 5448–5451 (2012).

  164. 164.

    , , & Field force alignment of disc-type π systems. ChemPhysChem. 8, 586–591 (2007).

  165. 165.

    et al. Polymerisable liquid crystalline organic semiconductors and their fabrication in organic field effect transistors. J. Mater. Chem. 13, 2436–2444 (2003).

  166. 166.

    et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328–333 (2006).

  167. 167.

    , , & Almost temperature independent charge carrier mobilities in liquid crystals. J. Chem. Phys. 112, 1541–1546 (2000).

  168. 168.

    et al. Temperature-independent hole mobility in discotic liquid crystals. J. Chem. Phys. 114, 1797–1802 (2001).

  169. 169.

    , , & One-dimensional hopping transport in a columnar discotic liquid-crystalline glass. Phil. Mag. B 79, 463–475 (1999).

  170. 170.

    , & Temperature-independent hole mobility of a smectic liquid-crystalline semiconductor based on band-like conduction. ChemPhysChem 14, 2750–2758 (2013).

  171. 171.

    , , & Temperature dependence of charge mobility in model discotic liquid crystals. Phys. Chem. Chem. Phys. 14, 5368–5375 (2012).

  172. 172.

    et al. Charge dissociation at interfaces between discotic liquid crystals: the surprising role of column mismatch. J. Am. Chem. Soc. 136, 2911–2920 (2014).

  173. 173.

    & Aqueous liquid crystals of graphene oxide. ACS Nano 5, 2908–2915 (2011).

  174. 174.

    & Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011).

  175. 175.

    in Handbook of Liquid Crystals Vol. 6 Ch. 14 (eds et al.) (Wiley, 2014).

  176. 176.

    , , & Vertically aligned graphene layer arrays from chromonic liquid crystal precursors. Adv. Mater. 23, 508–513 (2011).

  177. 177.

    , & From helical polyacetylene to helical graphite: synthesis in the chiral nematic liquid crystal field and morphology-retaining carbonisation. Chem. Soc. Rev. 39, 2466–2476 (2010).

  178. 178.

    et al. Helical carbon and graphite films prepared from helical poly(3,4-ethylenedioxythiophene) films synthesized by electrochemical polymerization in chiral nematic liquid crystals. Angew. Chem. Int. Ed. 53, 1659–1663 (2014).

  179. 179.

    , & Electrochromic window based on conducting poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonate). Adv. Funct. Mater. 12, 89–94 (2002).

  180. 180.

    & Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem. Rev. 114, 4175–4205 (2014).

  181. 181.

    , , & in Handbook of Liquid Crystals Vol. 8 Ch. 24 (eds et al.) (Wiley, 2014).

  182. 182.

    , & Electric stimulus-response behavior of liquid-crystalline viologen. J. Am. Chem. Soc. 108, 6409–6410 (1986).

  183. 183.

    , , , & New liquid crystalline viologens exhibiting electric stimulus-response behavior. Tetrahedron Lett. 28, 6475–6478 (1987).

  184. 184.

    , , & Viologen-based redox-active ionic liquid crystals forming columnar phases. Org. Lett. 9, 4271–4274 (2007).

  185. 185.

    et al. A redox-active columnar metallomesogen and its cyclic voltammetric responses. J. Mater. Chem. 17, 4136–4138 (2007).

  186. 186.

    , & An electrochromic nanostructured liquid crystal consisting of π -conjugated and ionic moieties. J. Am. Chem. Soc. 130, 13206–13207 (2008).

  187. 187.

    , , , & Nanostructured liquid crystals combining ionic and electronic functions. J. Am. Chem. Soc. 132, 7702–7708 (2010).

  188. 188.

    , , , & Electrofluorochromism in π -conjugated ionic liquid crystals. Nat. Commun. 5, 3105 (2014).

  189. 189.

    , , , & Mesomorphism and electrochemistry of thienoviologen liquid crystals. Phys. Chem. Chem. Phys. 17, 17670–17678 (2015).

  190. 190.

    , & Electrochromism-driven linearly and circularly polarised dichroism of poly(3,4-ethylenedioxythiophene) derivatives with chirality and liquid crystallinity. Chem. Commun. 49, 1883–1890 (2013).

  191. 191.

    & Liquid crystalline PEDOT derivatives exhibiting reversible anisotropic electrochromism and linearly and circularly polarized dichroism. J. Mater. Chem. 21, 10472–10481 (2011).

  192. 192.

    An optically active polythiophene exhibiting electrochemically driven light-interference modulation. Adv. Funct. Mater. 19, 1335–1342 (2009).

  193. 193.

    et al. A liquid-crystalline bistable [2]rotaxane. Angew. Chem. Int. Ed. 46, 4675–4679 (2007).

  194. 194.

    et al. A redox-switchable [2]rotaxane in a liquid-crystalline state. Chem. Commun. 46, 1224–1226 (2010).

  195. 195.

    , , , & Deformation of redox-active polymer gel based on polysiloxane backbone and bis(benzodithiolyl)bithienyl scaffold. Langmuir 30, 14680–14685 (2014).

  196. 196.

    , , , & Redox-driven molecular switches consisting of bis(benzodithiolyl)bithienyl scaffold and mesogenic moieties: synthesis and complexes with liquid crystalline polymer. J. Org. Chem. 79, 6590–6602 (2014).

  197. 197.

    & Toward flexible batteries. Science 319, 737–738 (2008).

  198. 198.

    , , & Liquid-crystalline physical gels. Chem. Soc. Rev. 36, 1857–1867 (2007).

  199. 199.

    , & Columnar liquid-crystalline assemblies of X-shaped pyrene-oligothiophene conjugates: photoconductivities and mechanochromic functions. J. Mater. Chem. C. 4, 5073–5080 (2016).

  200. 200.

    et al. Liquid-crystalline nanoparticles: hybrid design and mesophase structures. Beilstein J.Org. Chem. 8, 349–370 (2012).

  201. 201.

    & Aligned carbon nanotubes in the supramolecular order of discotic liquid crystals. Angew. Chem. Int. Ed. 46, 1501–1503 (2007).

  202. 202.

    & in Handbook of Liquid Crystals Vol. 6 Ch. 4 (eds et al.) (Wiley, 2014).

  203. 203.

    , & in Handbook of Liquid Crystals Vol. 5 Ch. 6 (eds et al.) (Wiley, 2014).

  204. 204.

    & in Handbook of Liquid Crystals Vol. 5 Ch. 4 (eds et al.) (Wiley, 2014).

  205. 205.

    & Roles of bilayer material properties in function and distribution of membrane proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 177–198 (2006).

  206. 206.

    , & in Handbook of Liquid Crystals Vol. 8 Ch. 18 (eds et al.) (Wiley, 2014).

  207. 207.

    , & Tristable nematic liquid crystal device using micropatterned surface alignment. Nature 420, 159–162 (2002).

  208. 208.

    in Handbook of Liquid Crystals Vol. 2 Ch. 9 (eds et al.) (Wiley, 2014).

  209. 209.

    & in Handbook of Liquid Crystals Vol. 4 Ch. 11 (eds et al.) (Wiley, 2014).

  210. 210.

    et al. Photovoltage enhancement from cyanobiphenyl liquid crystals and 4-tert-butylpyridine in Co(II/III) mediated dye-sensitized solar cells. Chem. Commun. 49, 9101–9103 (2013).

  211. 211.

    et al. Development of dye-sensitized solar cells composed of liquid crystal embedded, electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibers as polymer gel electrolytes. ACS Appl. Mater. Interfaces 4, 2096–2100 (2012).

  212. 212.

    , , & Thiophene-thiazolothiazole copolymers: significant impact of side chain composition on polymer orientation and solar cell performances. Adv. Mater. 26, 331–338 (2014).

  213. 213.

    et al. V-Shaped organic semiconductors with solution processability, high mobility, and high thermal durability. Adv. Mater. 25, 6392–6397 (2013).

  214. 214.

    et al. High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2, 152–158 (2010).

  215. 215.

    et al. Liquid crystal-on-organic field-effect transistor sensory devices for perceptive sensing of ultralow intensity gas flow touch. Sci. Rep. 3, 2452 (2013).

  216. 216.

    et al. Recent advances in the design of polymerizable lyotropic liquid crystal assemblies for heterogeneous catalysis and selective separations. Adv. Funct. Mater. 16, 865–878 (2006).

  217. 217.

    et al. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science 302, 2094–2097 (2003).

  218. 218.

    Molecular design and computer simulations of novel mesophases. J. Mater. Chem. 11, 2637–2646 (2001).

  219. 219.

    Toward rational design of complex nanostructured liquid crystals. Chem. Rec. 11, 66–76 (2011).

  220. 220.

    , , , & What makes a liquid crystal? The effect of free volume on soft matter. Liq. Cryst. 42, 593–622 (2015).

  221. 221.

    , & in Handbook of Liquid Crystals Vol. 5 Ch. 7 (eds et al.) (Wiley, 2014).

  222. 222.

    et al. Oligothiophene-based liquid crystals exhibiting smectic A phases in wider temperature ranges. Chem. Lett. 35, 1150–1151 (2006).

Download references

Acknowledgements

T.K. appreciates support by Core Research for Evolutional Science and Technology (CREST), Japan Science & Technology Agency (JST), Grant-in-Aid for Scientific Research (KAKENHI) from Ministry of Education, Culture, Sports, (MEXT), and FIRST programme from Cabinet Office, Government of Japan. The authors thank K. Takimiya at RIKEN and T. Okamoto at the University of Tokyo for helpful suggestions.

Author information

Affiliations

  1. Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

    • Takashi Kato
    •  & Masafumi Yoshio
  2. Department of Biotechnology, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan.

    • Takahiro Ichikawa
    •  & Hiroyuki Ohno
  3. Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Theodor-Boveri-Weg, 97074 Würzburg, Germany.

    • Bartolome Soberats
  4. Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan.

    • Masahiro Funahashi

Authors

  1. Search for Takashi Kato in:

  2. Search for Masafumi Yoshio in:

  3. Search for Takahiro Ichikawa in:

  4. Search for Bartolome Soberats in:

  5. Search for Hiroyuki Ohno in:

  6. Search for Masahiro Funahashi in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Takashi Kato.