Review Article

Chemically diverse and multifunctional hybrid organic–inorganic perovskites

  • Nature Reviews Materials 2, Article number: 16099 (2017)
  • doi:10.1038/natrevmats.2016.99
  • Download Citation
Published online:

Abstract

Hybrid organic–inorganic perovskites (HOIPs) can have a diverse range of compositions including halides, azides, formates, dicyanamides, cyanides and dicyanometallates. These materials have several common features, including their classical ABX3 perovskite architecture and the presence of organic amine cations that occupy the A-sites. Current research in HOIPs tends to focus on metal halide HOIPs, which show promise for use in solar cells and optoelectronic devices; however, the other subclasses also exhibit a diverse range of physical properties. In this Review, we summarize the chemical variability and structural diversity of all known HOIP subclasses. We also present a comprehensive account of their intriguing physical properties, including photovoltaic and optoelectronic properties, dielectricity, magnetism, ferroelectricity, ferroelasticity and multiferroicity. Moreover, we discuss the current challenges and future opportunities in this exciting field.

  • Subscribe to Nature Reviews Materials for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    in De novis quibusdam fossilibus quae in montibus Uraliis inveniuntur 3–5 (AG Schade, 1839).

  2. 2.

    & Minerals: Their Constitution and Origin (Cambridge Univ. Press, 2004).

  3. 3.

    , & Orthorhombic perovskite CaTiO3 and CdTiO3: structure and space group. Acta Crystallogr. C 43, 1668–1674 (1987).

  4. 4.

    , , , & Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chem. Commun. 51, 4180–4183 (2015).

  5. 5.

    et al. Anionic NaCl-type frameworks of [MnII(HCOO)3], templated by alkylammonium, exhibit weak ferromagnetism. Dalton Trans. 15, 2209–2216 (2004).

  6. 6.

    & Materials science: there’s room in the middle. Science 318, 58–59 (2007).

  7. 7.

    CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur. Z. Naturforsch. B 33, 1443–1445 (1978).

  8. 8.

    , , , & Exceptional dielectric phase transitions in a perovskite-type cage compound. Angew. Chem. Int. Ed. 49, 6608–6610 (2010).

  9. 9.

    , & Preparation and structure determination of tetraethylammonium calcium azide, [N(C2H5)4]Ca(N3)3. Z. Kristallogr. 175, 105–110 (1986).

  10. 10.

    et al. Structure and properties of complex hydride perovskite materials. Nat. Commun. 5, 5706 (2014).

  11. 11.

    Maç et al. Synthesis and order–disorder transition in a novel metal formate framework of [(CH3)2NH2][Na0.5Fe0.5(HCOO)3]. Dalton Trans. 43, 17075–170854 (2014).

  12. 12.

    et al. Antiperovskite structure with ternary tetrathiafulvalenium salts: construction, distortion, and antiferromagnetic ordering. Angew. Chem. Int. Ed. Engl. 30, 1498–1450 (1991).

  13. 13.

    et al. Cation-templated construction of three-dimensional α-Po cubic-type [M(dca)3]− networks. Syntheses, structures and magnetic properties of A[M(dca)3] (dca = dicyanamide; for A = benzyltributylammonium, M = Mn2+, Co2+; for A = benzyltriethylammonium, M = Mn2+, Fe2+). New J. Chem. 27, 779–782 (2003).

  14. 14.

    et al. Structural transition in the perovskite-like bimetallic azido coordination polymers: (NMe4)2[Bʹ∙Bʹʹ(N3)6] (Bʹ = Cr3+, Fe3+; Bʹʹ = Na+, K+). Cryst. Growth Des. 14, 3903–3909 (2014).

  15. 15.

    et al. Tunable and switchable dielectric constant in an amphidynamic crystal. J. Am. Chem. Soc. 135, 5230–5233 (2013).

  16. 16.

    et al. The cation-dependent structural phase transition and dielectric response in a family of cyanobridged perovskite-like coordination polymers. Dalton Trans. 45, 4224–4229 (2016).

  17. 17.

    Maç et al. Synthesis and characterization of [(CH3)2NH2][Na0.5Cr0.5(HCOO)3]: a rare example of luminescent metal–organic frameworks based on Cr(III) ions. Dalton Trans. 44, 6871–6879 (2015).

  18. 18.

    Die gesetze der krystallochemie. Naturwissenschaften 21, 477–485 (1926).

  19. 19.

    , & Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chem. Sci. 5, 4712–4715 (2014).

  20. 20.

    , & An extended tolerance factor approach for organic–inorganic perovskites. Chem. Sci. 6, 3430–3433 (2015).

  21. 21.

    & Structural diversity in non-layered hybrid perovskites of the RMCl3 family. Angew. Chem. Int. Ed. 49, 7684–7687 (2010).

  22. 22.

    , & Irreversible transformation of chiral to achiral polymorph of K[Co(HCOO)3]: synthesis, structures, and magnetic properties. Dalton Trans. 40, 4465–4473 (2011).

  23. 23.

    , & Stereochemistry of binary formats — crystalline structures of K4[Co(HCOO)6] and Cs[Co(HCOO)3]. Koord. Khim. 14, 1268–1272 (1988).

  24. 24.

    et al. Room-temperature polar order in [NH4][Cd(HCOO)3] — a hybrid inorganic–organic compound with a unique perovskite architecture. Inorg. Chem. 54, 2109–2116 (2015).

  25. 25.

    , , , & Temperature-induced irreversible phase transition from perovskite to diamond but pressure-driven back-transition in an ammonium copper formate. Angew. Chem. Int. Ed. 55, 2097–2100 (2016).

  26. 26.

    et al. The synthesis, structure and electronic properties of a lead-free hybrid inorganic–organic double perovskite (MA)2KBiCl6 (MA = methylammonium). Mater. Horiz. 3, 328–332 (2016).

  27. 27.

    , , , & On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7, 4548–4556 (2016).

  28. 28.

    Simple ways of determining perovskite structures. Acta Crystallogr. A 31, 756–762 (1975).

  29. 29.

    & Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr. B 54, 782–789 (1998).

  30. 30.

    , , & Group-theoretical analysis of octahedral tilting in ferroelectric perovskites. Acta Crystallogr. B 58, 934–938 (2002).

  31. 31.

    The classification of tilted octahedra in perovskites. Acta Crystallogr. A 28, 3384–3392 (1972).

  32. 32.

    Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallogr. B 53, 32–43 (1997).

  33. 33.

    Octahedral tilting in perovskites. II. Structure stabilizing forces. Acta Crystallogr. B 53, 44–66 (1997).

  34. 34.

    et al. Cation-dependent magnetic ordering and room-temperature bistability in azido-bridged perovskite-type compounds. J. Am. Chem. Soc. 135, 16006–16009 (2013).

  35. 35.

    et al. Coexistence of three ferroic orders in the multiferroic compound [(CH3)4N][Mn(N3)3] with perovskite-like structure. Chem. Eur. J. 22, 1–9 (2016).

  36. 36.

    et al. Ferroelasticity in a metal-organic framework perovskite; towards a new class of multiferroics. Acta Mater. 61, 4928–4938 (2013).

  37. 37.

    et al. Experimental and theoretical studies of structural phase transition in a novel polar perovskite-like [C2H5NH3][Na0.5Fe0.5(HCOO)3] formate. Dalton Trans. 45, 2574–2583 (2016).

  38. 38.

    & Handbook of Magnetism and Advanced Magnetic Materials (Wiley, 2007).

  39. 39.

    , , , & Order–disorder antiferroelectric phase transition in a hybrid inorganic–organic framework with the perovskite architecture. J. Am. Chem. Soc. 130, 10450–10451 (2008).

  40. 40.

    et al. Magnetoelectric coupling in the paramagnetic state of a metal–organic framework. Sci. Rep. 3, 2024 (2013).

  41. 41.

    et al. Reduced band gap hybrid perovskites resulting from combined hydrogen and halogen bonding at the organic–inorganic interface. Chem. Mater. 19, 600–607 (2007).

  42. 42.

    , , & Phase transitions, prominent dielectric anomalies, and negative thermal expansion in three high thermally stable ammonium magnesium-formate frameworks. Chem. Eur. J. 20, 1146–1158 (2014).

  43. 43.

    & Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

  44. 44.

    et al. Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture. J. Am. Chem. Soc. 136, 7801–7804 (2014).

  45. 45.

    , & Structural and magnetic diversity in tetraalkylammonium salts of anionic M[N(CN)2]3 (M = Mn and Ni) three-dimensional coordination polymers. Inorg. Chem. 44, 3194–3202 (2005).

  46. 46.

    , , , & Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

  47. 47.

    , & The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).

  48. 48.

    & Perovskite solar cells: from materials to devices. Small 11, 10–25 (2015).

  49. 49.

    et al. Hybrid organic–inorganic perovskites (HOIPs): opportunities and challenges. Adv. Mater. 27, 5102–5112 (2015).

  50. 50.

    The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842 (2014).

  51. 51.

    & Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987).

  52. 52.

    Oversigt. K. Danske Vidensk. Selsk. Forh. 8, 247 (1882).

  53. 53.

    Templating and structural engineering in organic-inorganic perovskites. Dalton Trans. 1–12 (2001).

  54. 54.

    , , & Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. J. Solid State Chem. 114, 159–163 (1995).

  55. 55.

    , & Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999).

  56. 56.

    Synthesis, structure, and properties of organic-inorganic perovskites and related materials. Prog. Inorg. Chem. 48, 1–121 (1999).

  57. 57.

    , , & Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

  58. 58.

    , , , & Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–646 (2012).

  59. 59.

    et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

  60. 60.

    , & Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

  61. 61.

    et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

  62. 62.

    , & Photovoltaic effect in GaAs p–n junctions and solar energy conversion. Phys. Rev. 101, 1208–1209 (1956).

  63. 63.

    et al. A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH3NH3PbX3 (X = I, Br and Cl). J. Mater. Chem. A 3, 9298–9307 (2015).

  64. 64.

    , & Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

  65. 65.

    , , & Role of hydrogen-bonding and its interplay with octahedral tilting in CH3NH3PbI3. Chem. Commun. 51, 6434–6437 (2015).

  66. 66.

    , , & Mechanical origin of the structural phase transition in methylammonium lead iodide CH3NH3PbI3. J. Phys. Chem. Lett. 6, 681–685 (2015).

  67. 67.

    , , & DFT and k ·p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells. Phys. Status Solidi (RRL) 8, 31–35 (2014).

  68. 68.

    , , & Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016).

  69. 69.

    & Photothermal stability of encapsulated Si solar cells and encapsulation materials upon accelerated exposures. Sol. Energy Mater. Sol. Cells 61, 153–188 (2000).

  70. 70.

    et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

  71. 71.

    et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

  72. 72.

    et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137, 6804–6819 (2015).

  73. 73.

    et al. Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 7, 1254–1259 (2016).

  74. 74.

    , , & A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138–2141 (2016).

  75. 75.

    , , & Cs2AgBiX6(X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28, 1348–1354 (2016).

  76. 76.

    et al. Exploring the properties of lead-free hybrid double perovskites using a combined computational–experimental approach. J. Mater. Chem. A 4, 12025–12029 (2016).

  77. 77.

    , & in Advanced Characterization Techniques for Thin Film Solar Cells (eds & ) 3–32 (Wiley-VCH, 2011).

  78. 78.

    et al. Quasiparticle band gap of organic–inorganic hybrid perovskites: crystal structure, spin–orbit coupling, and self-energy effects. Phys. Rev. B 93, 085202 (2016).

  79. 79.

    et al. Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites. Nat. Commun. 6, 8420 (2015).

  80. 80.

    et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photonics 10, 53–59 (2016).

  81. 81.

    et al. Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 11755 (2016).

  82. 82.

    , , , & High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

  83. 83.

    , , & The mechanism of slow hot-hole cooling in lead-iodide perovskite: first-principles calculation on carrier lifetime from electron–phonon interaction. Nano Lett. 15, 3103–3108 (2015).

  84. 84.

    , , & Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89, 155204 (2014).

  85. 85.

    , , , & Low electron-polar optical phonon scattering as a fundamental aspect of carrier mobility in methylammonium lead halide CH3NH3PbI3 perovskites. Phys. Chem. Chem. Phys. 18, 15352–15362 (2016).

  86. 86.

    et al. Are mobilities in hybrid organic-inorganic halide perovskites actually “high”? J. Phys. Chem. Lett. 6, 4754–4757 (2015).

  87. 87.

    & Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015).

  88. 88.

    et al. Role of polar phonons in the photo excited state of metal halide perovskites. Sci. Rep. 6, 28618 (2016).

  89. 89.

    et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

  90. 90.

    et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

  91. 91.

    et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

  92. 92.

    , , & Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

  93. 93.

    , & Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

  94. 94.

    , , & The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014).

  95. 95.

    et al. Electronic level alignment in inverted organometal perovskite solar cells. Adv. Mater. Interfaces 2, 1400532 (2015).

  96. 96.

    et al. The in-gap electronic state spectrum of methylammonium lead iodide single-crystal perovskites. Adv. Mater. 28, 3406–3410 (2016).

  97. 97.

    et al. Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures — a photoelectron spectroscopy investigation. Chem. Mater. 27, 1720–1731 (2015).

  98. 98.

    et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 7, 1377–1381 (2014).

  99. 99.

    et al. Electronic structure of CH3NH3PbX3 perovskites: dependence on the halide moiety. J. Phys. Chem. C 119, 1818–1825 (2015).

  100. 100.

    Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

  101. 101.

    et al. Photon recycling in lead iodide perovskite solar cells. Science 351, 1430–1433 (2016).

  102. 102.

    Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

  103. 103.

    & Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc. Chem. Res. 49, 146–154 (2016).

  104. 104.

    et al. Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites. Adv. Mater. 27, 7938–7944 (2015).

  105. 105.

    , , , & Temperature-dependent charge-carrier dynamics in CHNH3PbI3 perovskite thin films. Adv. Funct. Mater. 25, 6218–6227 (2015).

  106. 106.

    & Minority-carrier lifetimes and internal quantum efficiency of surface-free GaAs. J. Appl. Phys. 49, 6103–6108 (1978).

  107. 107.

    et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

  108. 108.

    , & Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE J. Photovolt. 2, 303–311 (2012).

  109. 109.

    et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

  110. 110.

    et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

  111. 111.

    , , , & Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995–6001 (2014).

  112. 112.

    The physics and applications of random lasers. Nat. Phys. 4, 359–367 (2008).

  113. 113.

    et al. Controlling the cavity structures of two-photon-pumped perovskite microlasers. Adv. Mater. 28, 4040–4046 (2016).

  114. 114.

    et al. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15, 2640–2644 (2015).

  115. 115.

    et al. Bright light-emitting diodes based on organometal halide perovskite nanoplatelets. Adv. Mater. 28, 305–311 (2016).

  116. 116.

    et al. Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. J. Phys. Chem. Lett. 5, 3335–3339 (2014).

  117. 117.

    , , & Ferroelectric polarization of CH3NH3PbI3: a detailed study based on density functional theory and symmetry mode analysis. J. Phys. Chem. Lett. 6, 2223–2231 (2015).

  118. 118.

    et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

  119. 119.

    , & Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1, 042111 (2013).

  120. 120.

    , , , & Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices. Appl. Phys. Lett. 106, 173502 (2015).

  121. 121.

    , , , & Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites. Proc. Natl Acad. Sci. USA 111, 6900–6904 (2014).

  122. 122.

    et al. Tunable ferroelectric polarization and its interplay with spin-orbit coupling in tin iodide perovskites. Nat. Commun. 5, 5900 (2014).

  123. 123.

    Mechanical properties of hybrid organic–inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater. 2, 081801 (2014).

  124. 124.

    , , & Pressure-induced phase transitions and templating effect in three-dimensional organic–inorganic hybrid perovskites. Phys. Rev. B 68, 020103 (2003).

  125. 125.

    , , , & Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation. J. Mater. Chem. A 3, 18450–18455 (2015).

  126. 126.

    , , , & Mechanical properties of APbX3 (A = Cs or CH3NH3; X = I or Br) perovskite single crystals. MRS Commun. 5, 623–629 (2015).

  127. 127.

    , , , & Pressure response of an organic–inorganic perovskite: methylammonium lead bromide. Chem. Mater. 19, 2401–2405 (2007).

  128. 128.

    et al. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite. J. Am. Chem. Soc. 137, 11144–11149 (2015).

  129. 129.

    & Mechanism of pressure-induced phase transitions, amorphization, and absorption-edge shift in photovoltaic methylammonium lead iodide. J. Phys. Chem. Lett. 7, 3458–3466 (2016).

  130. 130.

    et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties. ACS Cent. Sci. 2, 201–209 (2016).

  131. 131.

    , , & Formate-based magnetic metal–organic frameworks templated by protonated amines. Adv. Mater. 22, 1526–1533 (2010).

  132. 132.

    & The crystal structure of dimethylammonium copper(II) formate, NH2(CH3)2[Cu(OOCH)3]. Acta Crystallogr. B 29, 1752–1756 (1973).

  133. 133.

    On the structure of Zn(C4H8N2O6). Acta Crystallogr. C 42, 1327–1328 (1986).

  134. 134.

    , , & Copper oxidation in the CCL4-amide system — synthesis and structure of [CH3NH3][Cu(HCOO)3]. Koord. Khim. 16, 218–224 (1990).

  135. 135.

    , , & Perovskite-like metal formates with weak ferromagnetism and as precursors to amorphous materials. Inorg. Chem. 43, 4615–4625 (2004).

  136. 136.

    , , & Metal-organic perovskites: synthesis, structures, and magnetic properties of [C(NH2)3][MII(HCOO)3] (M = Mn, Fe, Co, Ni, Cu, and Zn; C(NH2)3 = guanidinium). Chem. Eur. J. 15, 12050–12064 (2009).

  137. 137.

    et al. Coexistence of magnetic and electrical order in the new perovskite-like (C3N2H5)[Mn(HCOO)3] formate. RSC Adv. 3, 22404–22411 (2013).

  138. 138.

    , , , & [NH2NH3][M(HCOO)3] (M = Mn2+, Zn2+, Co2+ and Mg2+): structural phase transitions, prominent dielectric anomalies and negative thermal expansion, and magnetic ordering. Inorg. Chem. Front. 1, 83–98 (2014).

  139. 139.

    Maç et al. Perovskite metal formate framework of [NH2-CH+-NH2]Mn(HCOO)3]: phase transition, magnetic, dielectric, and phonon properties. Inorg. Chem. 53, 5260–5268 (2014).

  140. 140.

    et al. Synthesis, crystal structure, magnetic and vibrational properties of formamidine-templated Co and Fe formates. Polyhedron 85, 137–143 (2015).

  141. 141.

    & Poly[dimethylammonium [tris(μ2-formato-κ2O :Oʹ)cadmate(II)]]. . Acta Crystallogr. E 66, m1599 (2010).

  142. 142.

    , , & Nä Polymeric potassium triformatocobalt(II). Acta Crystallogr. E 67, m422 (2011).

  143. 143.

    et al. Phase transitions and CO2 adsorption properties of polymeric magnesium formate. Cryst. Growth Des. 8, 3302–3308 (2008).

  144. 144.

    Bocˇ, , & Poly[methylammonium tris(μ2-formato-κ2O:Oʹ)cobalt(II)]. Acta Crystallogr. C 60, m631–m633 (2004).

  145. 145.

    et al. Order-disorder transition and weak ferromagnetism in the perovskite metal formate frameworks of [(CH3)2NH2][M(HCOO)3] and [(CH3)2ND2][M(HCOO)3] (M = Ni, Mn). Inorg. Chem. 53, 457–467 (2014).

  146. 146.

    et al. Alkali metal ion templated transition metal formate framework materials: synthesis, crystal structures, ion migration, and magnetism. Inorg. Chem. 53, 10178–10188 (2014).

  147. 147.

    et al. Temperature identification on two 3D Mn(II) metal–organic frameworks: syntheses, adsorption and magnetism. RSC Adv. 4, 20605–20611 (2014).

  148. 148.

    et al. Structural, thermal, dielectric and phonon properties of perovskite-like imidazolium magnesium formate. Phys. Chem. Chem. Phys. 18, 13993–14000 (2016).

  149. 149.

    et al. Exploiting synthetic conditions to promote structural diversity within the scandium(III)/pyrimidine-4,6-dicarboxylate system. Cryst. Growth Des. 15, 2352–2363 (2015).

  150. 150.

    Reversible high-temperature phase transition of a manganese(II) formate framework with imidazolium cations. Acta Crystallogr. C 69, 616–619 (2013).

  151. 151.

    On the structure of Zn(C4H8N2O6). Acta Crystallogr. C 42, 1327–1328 (1986).

  152. 152.

    , & Poly[tetramethylammonium [tri- μ2-formato-κ6O:Oʹ-manganate(II)]]. Acta Crystallogr. E 69, m541 (2013).

  153. 153.

    -Q.& Crystal structure of catena-(dimethylammonium) tris(μ2-formato)copper(II),[C2H8N][Cu(CHO2)3]. Z. Kristallogr. New Cryst. St. 224, 383–384 (2009).

  154. 154.

    et al. Compositional dependence of anomalous thermal expansion in perovskite-like ABX3 formates. Dalton Trans. 45, 4169–4178 (2016).

  155. 155.

    et al. Multiferroic behavior associated with an order–disorder hydrogen bonding transition in metal–organic frameworks (MOFs) with the perovskite ABX3 architecture. J. Am. Chem. Soc. 131, 13625–13627 (2009).

  156. 156.

    , , & in Encyclopedia of Inorganic and Bioinorganic Chemistry (eds et al.) 1–23 (Wiley, 2014).

  157. 157.

    , & Constructing magnetic molecular solids by employing three-atom ligands as bridges. Chem. Commun. 281–294 (2008).

  158. 158.

    , , & Zinc-diluted magnetic metal formate perovskites: synthesis, structures, and magnetism of [CH3NH3][Mnx Zn1 − x(HCOO)3] (x = 0–1). Chem. Asian J. 7, 1697–1707 (2012).

  159. 159.

    et al. Quantum tunneling of magnetization in a metal–organic framework. Phys. Rev. Lett. 112, 017202 (2014).

  160. 160.

    et al. A multiferroic perdeutero metal–organic framework. Angew. Chem. Int. Ed. 50, 11947–11951 (2011).

  161. 161.

    , , & Metal–organic complex ferroelectrics. Chem. Soc. Rev. 40, 3577–3598 (2011).

  162. 162.

    & Ferroelectric metal–organic frameworks. Chem. Rev. 112, 1163–1195 (2012).

  163. 163.

    et al. Characterization of the order–disorder dielectric transition in the hybrid organic–inorganic perovskite-like formate Mn(HCOO)3[(CH3)2NH2]. Inorg. Chem. 49, 1510–1516 (2010).

  164. 164.

    et al. Near room temperature dielectric transition in the perovskite formate framework [(CH3)2NH2][Mg(HCOO)3]. Phys. Chem. Chem. Phys. 14, 8498–8501 (2012).

  165. 165.

    , , & Tuning the ferroelectric polarization in a multiferroic metal–organic framework. J. Am. Chem. Soc. 135, 18126–18130 (2013).

  166. 166.

    , & Strain tuning of ferroelectric polarization in hybrid organic inorganic perovskite compounds. J. Phys. Chem. Lett. 6, 4553–4559 (2015).

  167. 167.

    , , , & An A-site mixed-ammonium solid solution perovskite series of [(NH2NH3)x (CH3NH3)1x][Mn(HCOO)3] (x = 1.00–00.67). Angew. Chem. Int. Ed. 54, 11093–11096 (2015).

  168. 168.

    et al. Tuneable mechanical and dynamical properties in the ferroelectric perovskite solid solution [NH3NH2]1x[NH3OH]xZn(HCOO)3. Chem. Sci. 7, 5108–5112 (2016).

  169. 169.

    , , , & Giant dielectric anomaly of a metal–organic perovskite with four-membered ring ammonium cations. Angew. Chem. Int. Ed. 50, 11441–11445 (2011).

  170. 170.

    et al. Freezing of ring-puckering molecular motion and giant dielectric anomalies in metal–organic perovskites. Chem. Asian J. 7, 2786–2790 (2012).

  171. 171.

    Ferroelectricity, domain structure, and phase transitions of barium titanate. Rev. Mod. Phys. 22, 221–237 (1950).

  172. 172.

    Giant polarization in high polymers. J. Electron. Mater. 15, 201–203 (1986).

  173. 173.

    et al. Phase transition and ring-puckering motion in a metal–organic perovskite [(CH2)3NH2][Zn(HCOO)3]. J. Phys. Chem. A 116, 12422–12428 (2012).

  174. 174.

    Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).

  175. 175.

    , , & Elastic relaxation behavior, magnetoelastic coupling, and order–disorder processes in multiferroic metal–organic frameworks. Phys. Rev. B 86, 214304 (2012).

  176. 176.

    , & On Mn2+ EPR probing of the ferroelectric transition and absence of magnetoelectric coupling in dimethylammonium manganese formate (CH3)2NH2Mn(HCOO)3, a metal-organic complex with the Pb-free perovskite framework. J. Phys. Chem. C 119, 28143–28147 (2015).

  177. 177.

    et al. Cross coupling between electric and magnetic orders in a multiferroic metal–organic framework. Sci. Rep. 4, 6062 (2014).

  178. 178.

    et al. Electric control of magnetism in a multiferroic metal–organic framework. Phys. Status Solidi RRL 8, 91–94 (2014).

  179. 179.

    et al. Observation of resonant quantum magnetoelectric effect in a multiferroic metal–organic framework. J. Am. Chem. Soc. 138, 782–785 (2016).

  180. 180.

    et al. Magnetic ordering-induced multiferroic behavior in [CH3NH3][Co(HCOO)3] metal–organic framework. J. Am. Chem. Soc. 138, 1122–1125 (2016).

  181. 181.

    et al. Electric control of magnetization and interplay between orbital ordering and ferroelectricity in a multiferroic metal–organic framework. Angew. Chem. Int. Ed. 50, 5847–5850 (2011).

  182. 182.

    , , , & Hybrid improper ferroelectricity in a multiferroic and magnetoelectric metal–organic framework. Adv. Mater. 25, 2284–2290 (2013).

  183. 183.

    et al. High-temperature ferroelectricity and strong magnetoelectric effects in a hybrid organic–inorganic perovskite framework. Phys. Status Solidi RRL 8, 62–67 (2015).

  184. 184.

    , & Influence of ligand field stabilization energy on the elastic properties of multiferroic MOFs with the perovskite architecture. Dalton Trans. 41, 3949–3952 (2012).

  185. 185.

    et al. Crystal structure and spectroscopic and magnetic properties of the manganese(II) and copper(II) azido-tetramethylammonium systems. Inorg. Chem. 38, 4647–4652 (1999).

  186. 186.

    et al. Above-room-temperature ferroelastic phase transition in a perovskite-like compound [N(CH3)4][Cd(N3)3]. Chem. Commun. 50, 1989–1991 (2014).

  187. 187.

    et al. Switchable guest molecular dynamics in a perovskite-like coordination polymer toward sensitive thermoresponsive dielectric materials. Angew. Chem. Int. Ed. 54, 914–918 (2015).

  188. 188.

    , , & Spin canting in the 3D anionic dicyanamide structure (SPh3)Mn(dca)3 (Ph = phenyl, dca = dicyanamide). Inorg. Chem. 43, 4100–4102 (2004).

  189. 189.

    et al. Role of temperature and pressure on the multisensitive multiferroic dicyanamide framework [TPrA][Mn(dca)3] with perovskite-like structure. Inorg. Chem. 54, 11680–11687 (2015).

  190. 190.

    et al. Multiple phase and dielectric transitions on a novel multi-sensitive [TPrA][M(dca)3] (M: Fe2+, Co2+and Ni2+) hybrid inorganic–organic perovskite family. J. Mater. Chem. C 4, 4889–4898 (2016).

  191. 191.

    et al. Dynamics of a caged imidazolium cation — toward understanding the order–disorder phase transition and the switchable dielectric constant. Chem. Commun. 51, 4568–4571 (2015).

  192. 192.

    , & Dicyanometallates as model extended frameworks. J. Am. Chem. Soc. 138, 5886–5896 (2016).

  193. 193.

    , & Synthesis, structure and magnetic properties of 2D and 3D [cation]{M[Au(CN)2]3} (M = Ni, Co) coordination polymers. Polyhedron 26, 2189–2199 (2007).

  194. 194.

    & Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

  195. 195.

    , & Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014).

  196. 196.

    Electrocaloric materials. Annu. Rev. Mater. Res. 41, 229–240 (2011).

  197. 197.

    Molecular dynamics of flexible polar cations in a variable confined space: toward exceptional two-step nonlinear optical switches. Adv. Mater. 28, 5886–5890 (2016).

  198. 198.

    , , & Robust dynamics. Nat. Chem. 2, 439–443 (2010).

  199. 199.

    , , & Defects and disorder in metal organic frameworks. Dalton Trans. 45, 4113–4126 (2016).

  200. 200.

    , , , Structural phase transitions in perovskite compounds based on diatomic or multiatomic bridges. CrystEngComm 18, 7915–7928 (2016).

Download references

Acknowledgements

The authors thank W.-X. Zhang and the Materials Chemistry and Physics Group in Huazhong University of Science and Technology for help with figures. W.L. is grateful to P.-X. Lu for illuminating discussions. W.L., Z.W. and S.G. acknowledge funding support from the National Natural Science Foundation of China (Grant Nos. 21571072, 21621061, 21290171) and the 973 Programs (Grant no. 2014CB921301). A.K.C. acknowledges financial support from the Ras Al Khaimah Centre for Advanced Materials. F.D. acknowledges funding from a Herchel Smith Research Fellowship and a Winton Advanced Research Fellowship.

Author information

Affiliations

  1. School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.

    • Wei Li
  2. Laboratory for Optical Information Technology, Wuhan Institute of Technology, Wuhan 430205, China.

    • Wei Li
  3. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

    • Zheming Wang
    •  & Song Gao
  4. Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.

    • Felix Deschler
    •  & Richard H. Friend
  5. Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS, UK.

    • Anthony K. Cheetham

Authors

  1. Search for Wei Li in:

  2. Search for Zheming Wang in:

  3. Search for Felix Deschler in:

  4. Search for Song Gao in:

  5. Search for Richard H. Friend in:

  6. Search for Anthony K. Cheetham in:

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Wei Li or Song Gao or Richard H. Friend or Anthony K. Cheetham.