Review Article

Plasmonic colour generation

  • Nature Reviews Materials 2, Article number: 16088 (2016)
  • doi:10.1038/natrevmats.2016.88
  • Download Citation
Published online:

Abstract

Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic colours and recent nanofabrication developments, comparing technology-performance indicators for traditional and nanophotonic colour technologies. The structures of interest include diffraction gratings, nanoaperture arrays, thin films, and multilayers and structures that support Mie resonances and whispering-gallery modes. We discuss plasmonic colour nanotechnology based on localized surface plasmon resonances, such as gap plasmons and hybridized disk–hole plasmons, which allow for colour printing with sub-diffraction resolution. We also address a range of fabrication approaches that enable large-area printing and nanoscale lithography compatible with complementary metal-oxide semiconductor technologies, including nanoimprint lithography and self-assembly. Finally, we review recent developments in dynamically reconfigurable plasmonic colours and in the laser-induced post-processing of plasmonic colour surfaces.

  • Subscribe to Nature Reviews Materials for full access:

    $59

    Subscribe

  • Purchase article full text and PDF:

    $32

    Buy now

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Introductory lecture: nanoplasmonics. Faraday Discuss. 178, 9–36 (2015).

  2. 2.

    Photonics: metamaterials in the sunshine. Nat. Mater. 5, 599–600 (2006).

  3. 3.

    , , , & Metaphotonics: an emerging field with opportunities and challenges. Phys. Rep. 594, 1–60 (2015).

  4. 4.

    Colours at the nanoscale: printable stained glass. Nat. Nanotechnol. 7, 550–551 (2012).

  5. 5.

    Colouring at the nanoscale. Nat. Nanotechnol. 10, 15–16 (2015).

  6. 6.

    View from… SPP7: a colourful future? Nat. Photonics 9, 487–488 (2015).

  7. 7.

    The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure. J. Nano Res. 8, 109–132 (2009).

  8. 8.

    (ed.) Springer Handbook of Nanotechnology (Springer-Verlag, 2010).

  9. 9.

    , & Planar photonics with metasurfaces. Science 339, 1232009 (2013).

  10. 10.

    Optical negative-index metamaterials. Nat. Photonics 1, 41–48 (2007).

  11. 11.

    & Photonic structures in biology. Nature 424, 852–855 (2003).

  12. 12.

    , & Physics of structural colors. Rep. Prog. Phys. 71, 076401 (2008).

  13. 13.

    & Biomimetics of photonic nanostructures. Nat. Nanotechnol. 2, 347–353 2007).

  14. 14.

    , & Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag. 29, 2625–2643 (2009).

  15. 15.

    & in Engineered Biomimicry Ch. 11 (eds Lakhtakia, A. & Martín-Palma, R. J.) 267–303 (Elsevier, 2013).

  16. 16.

    , , & Structural colors: from natural to artificial systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 758–775 (2016).

  17. 17.

    et al. Structural colors: from plasmonic to carbon nanostructures. Small 7, 3128–3136 (2011).

  18. 18.

    , , , & Color generation via subwavelength plasmonic nanostructures. Nanoscale 7, 6409–6419 (2015).

  19. 19.

    & Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010).

  20. 20.

    & Nanofocusing of electromagnetic radiation. Nat. Photonics 8, 14–23 (2014).

  21. 21.

    et al. Printing colour at the optical diffraction limit. Nat. Nanotechnol. 7, 557–561 (2012).

  22. 22.

    et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4023–4029 (2014).

  23. 23.

    , , & Subwavelength plasmonic color printing protected for ambient use. Nano Lett. 14, 783–787 (2014).

  24. 24.

    et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008).

  25. 25.

    , , & Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts Chem. Res. 41, 1578–1586 (2008).

  26. 26.

    & Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

  27. 27.

    , & Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011).

  28. 28.

    et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).

  29. 29.

    , & Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

  30. 30.

    et al. Periodic nanostructures for photonics. Phys. Rep. 444, 101–202 (2007).

  31. 31.

    et al. Structural colors from Fano resonances. ACS Photonics 2, 27–32 (2015).

  32. 32.

    et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat. Photonics 3, 534–540 (2009).

  33. 33.

    , , , & Color rendering plasmonic aluminum substrates with angular symmetry breaking. ACS Nano 9, 12383–12391 (2015).

  34. 34.

    , , & Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array. Sci. Rep. 5, 12450 (2015).

  35. 35.

    , , , & Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

  36. 36.

    & Light in tiny holes. Nature 445, 39–46 (2007).

  37. 37.

    Rigorous vector theories of diffraction gratings. Prog. Opt. 21, 1–67 (1984).

  38. 38.

    , , & A microscopic view of the electromagnetic properties of sub-λ metallic surfaces. Surf. Sci. Rep. 64, 453–469 (2009).

  39. 39.

    et al. Imprinted and injection-molded nano-structured optical surfaces. Proc. SPIE 8818, 881803 (2013).

  40. 40.

    Colored images generated by metallic sub-wavelength gratings. Opt. Express 17, 12189–12196 (2009).

  41. 41.

    Reflective colored image based on metal–dielectric–metal-coated gratings. Opt. Lett. 38, 1398–1400 (2013).

  42. 42.

    , & Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters. Sci. Rep. 3, 2840 (2013).

  43. 43.

    , , & Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit. Sci. Rep. 3, 1194 (2013).

  44. 44.

    , & Metallized gratings enable color effects and floating screen films by first-order diffraction. Adv. Opt. Mater. 3, 1793–1799 (2015).

  45. 45.

    , , & Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 1, 59 (2010).

  46. 46.

    , , & Four-fold color filter based on plasmonic phase retarder. ACS Photonics 3, 190–196 (2016).

  47. 47.

    Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267–1290 (2007).

  48. 48.

    et al. Plasmonic color filter and its fabrication for large-area applications. Adv. Opt. Mater. 1, 133–138 (2013).

  49. 49.

    et al. Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes. Appl. Phys. Lett. 98, 093113 (2011).

  50. 50.

    , , , & Color filter based on a subwavelength patterned metal grating. Opt. Express 15, 15457–15463 (2007).

  51. 51.

    , & Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor. ACS Nano 7, 10038–10047 (2013).

  52. 52.

    & High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt. Express 18, 14056–14062 (2010).

  53. 53.

    et al. A CMOS image sensor integrated with plasmonic colour filters. Plasmonics 7, 695–699 (2012).

  54. 54.

    et al. CMOS photodetectors integrated with plasmonic color filters. IEEE Photonics Technol. Lett. 24, 197–199 (2012).

  55. 55.

    et al. Filling schemes at submicron scale: development of submicron sized plasmonic colour filters. Sci. Rep. 4, 6435 (2014).

  56. 56.

    , & Plasmonic color filters for CMOS image sensor applications. Nano Lett. 12, 4349–4354 (2012).

  57. 57.

    , , & Multi-spectral materials: hybridisation of optical plasmonic filters and a terahertz metamaterial absorber. Adv. Opt. Mater. 2, 149–153 (2014).

  58. 58.

    , , & Plasmonic photon sorters for spectral and polarimetric imaging. Nat. Photonics 2, 161–164 (2008).

  59. 59.

    , , & Site and lattice resonances in metallic hole arrays. Opt. Express 14, 7–18 (2006).

  60. 60.

    , , & Anti-reflective coatings: a critical, in-depth review. Energy Environ. Sci. 4, 3779–3804 (2011).

  61. 61.

    & Antireflective coatings: conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review. Materials 9, 497 (2016).

  62. 62.

    , , & Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 12, 20–24 (2013).

  63. 63.

    & Silicon colors: spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability. Opt. Express 22, 31545–31554 (2014).

  64. 64.

    , , & Inkjet color printing by interference nanostructures. ACS Nano 10, 3078–3086 (2016).

  65. 65.

    et al. Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings. Adv. Mater. 24, 2375–2379 (2012).

  66. 66.

    et al. Colorful solar selective absorber integrated with different colored units. Opt. Express 24, A92–A103 (2016).

  67. 67.

    et al. Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly. Angew. Chem. Int. Ed. 53, 2899–2903 (2014).

  68. 68.

    How can a particle absorb more than the light incident on it? Am. J. Phys. 51, 323–327 (1983).

  69. 69.

    , , , & All-dielectric colored metasurfaces with silicon Mie resonators. ACS Nano 10, 7761–7767 (2016).

  70. 70.

    et al. Angle-independent structural colors of silicon. J. Nanophotonics 8, 083988 (2014).

  71. 71.

    Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen Physik 330, 377–445 (in German) (1908).

  72. 72.

    , , & Mie resonance-based dielectric metamaterials. Mater. Today 12, 60–69 (2009).

  73. 73.

    et al. Multicolored vertical silicon nanowires. Nano Lett. 11, 1851–1856 (2011).

  74. 74.

    , , , & Tuning the color of silicon nanostructures. Nano Lett. 10, 2649–2654 (2010).

  75. 75.

    , , & Structural coloring in large scale coreshell nanowires. Nano Lett. 11, 4661–4665 (2011).

  76. 76.

    et al. Transparent displays enabled by resonant nanoparticle scattering. Nat. Commun. 5, 3152 (2014).

  77. 77.

    , , , & Magnetic light. Sci. Rep. 2, 492 (2012).

  78. 78.

    et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7, 7824–7832 (2013).

  79. 79.

    , , & Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nat. Commun. 5, 3402 (2014).

  80. 80.

    & Antennas for light. Nat. Photonics 5, 83–90 (2011).

  81. 81.

    , & Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett. 12, 1026–1031 (2012).

  82. 82.

    et al. Babinet's principle for optical frequency metamaterials and nanoantennas. Phys. Rev. B 76, 033407 (2007).

  83. 83.

    , & Dual color plasmonic pixels create a polarization controlled nano color palette. ACS Nano 10, 492–498 (2016).

  84. 84.

    et al. Three-dimensional plasmonic stereoscopic prints in full colour. Nat. Commun. 5, 5361 (2014).

  85. 85.

    et al. Vivid, full-color aluminum plasmonic pixels. Proc. Natl Acad. Sci. USA 111, 14348–14353 (2014).

  86. 86.

    et al. High chromaticity aluminum plasmonic pixels for active liquid crystal displays. ACS Nano 10, 1108–1117 (2016).

  87. 87.

    et al. Polarization-independent plasmonic subtractive color filtering in ultrathin Ag nanodisks with high transmission. Appl. Opt. 55, 148–152 (2016).

  88. 88.

    et al. Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale 5, 6243–6248 (2013).

  89. 89.

    et al. Angle-insensitive plasmonic color filters with randomly distributed silver nanodisks. Opt. Lett. 40, 4979–4982 (2015).

  90. 90.

    , , , & Subtractive color filters based on a silicon–aluminum hybrid-nanodisk metasurface enabling enhanced color purity. Sci. Rep. 6, 29756 (2016).

  91. 91.

    , , & Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array. Nano Lett. 14, 6672–6678 (2014).

  92. 92.

    , , & Optical response of plasmonic relief meta-surfaces. J. Opt. 14, 114002 (2012).

  93. 93.

    et al. Continuous metal plasmonic frequency selective surfaces. Opt. Express 19, 23279–23285 (2011).

  94. 94.

    et al. Plasmon-enhanced structural coloration of metal films with isotropic pinwheel nanoparticle arrays. Opt. Express 19, 23818–23830 (2011).

  95. 95.

    , & Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98–OP120 (2012).

  96. 96.

    , , & Structural color printing based on plasmonic metasurfaces of perfect light absorption. Sci. Rep. 5, 11045 (2015).

  97. 97.

    et al. Aluminum plasmonic metamaterials for structural color printing. Opt. Express 23, 14552–14560 (2015).

  98. 98.

    et al. Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer. Opt. Express 23, 25329–25339 (2015).

  99. 99.

    , & All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance. Opt. Express 23, 32597–32605 (2015).

  100. 100.

    , , , & Comparative study of plasmonic colors from all-metal structures of posts and pits. ACS Photonics 3, 1000–1009 (2016).

  101. 101.

    , , , & Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure. Microelectron. Eng. 83, 893–896 (2006).

  102. 102.

    et al. Resistless nanoimprinting in metal for plasmonic nanostructures. Small 9, 3778–3783 (2013).

  103. 103.

    et al. Emission enhancement and polarization of semiconductor quantum dots with nanoimprinted plasmonic cavities: towards scalable fabrication of plasmon–exciton displays. Nanoscale 7, 13816–13821 (2015).

  104. 104.

    et al. Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber. Adv. Opt. Mater. 4, 1196–1202 (2016).

  105. 105.

    , & High-color-purity subtractive color filters with a wide viewing angle based on plasmonic perfect absorbers. Adv. Opt. Mater. 3, 347–352 (2015).

  106. 106.

    , & Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics 2, 183–188 (2015).

  107. 107.

    , , , & Gap and channeled plasmons in tapered grooves: a review. Nanoscale 7, 9355–9386 (2015).

  108. 108.

    et al. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves. Nat. Commun. 3, 969 (2012).

  109. 109.

    et al. Extremely confined gap surface-plasmon modes excited by electrons. Nat. Commun. 5, 4125 (2014).

  110. 110.

    & Reduction of lens reflexion by the ”moth eye” principle. Nature 244, 281–282 (1973).

  111. 111.

    et al. Black metal thin films by deposition on dielectric antireflective moth-eye nanostructures. Sci. Rep. 5, 10563 (2015).

  112. 112.

    A contribution to the theory of the microscope and the nature of microscopic vision. Proc. Bristol Nat. Soc. 1, 200–261 (1876).

  113. 113.

    et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 5, 176–182 (2011).

  114. 114.

    et al. Full-spectrum flexible color printing at the diffraction limit. ACS Photonics 3, 754–757 (2016).

  115. 115.

    , , , & Plasmonic colour laser printing. Nat. Nanotechnol. 11, 325–329 (2016).

  116. 116.

    , & Full-color subwavelength printing with gap-plasmonic optical antennas. Nano Lett. 16, 3166–3172 (2016).

  117. 117.

    , , & A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

  118. 118.

    , & Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks. Opt. Express 19, 21098–21108 (2011).

  119. 119.

    & Two-dimensional subwavelength gratings with different frontside/backside reflectance. Opt. Lett. 38, 1028–1030 (2013).

  120. 120.

    et al. Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett. 14, 4499–4504 (2014).

  121. 121.

    , & The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures. Nano Lett. 16, 3817–3823 (2016).

  122. 122.

    et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 15, 3122–3127 (2015).

  123. 123.

    et al. Polarization-dependent aluminum metasurface operating at 450 nm. Opt. Express 23, 28829–28835 (2015).

  124. 124.

    , , & Tunable color filters based on metal–insulator–metal resonators. Nano Lett. 9, 2579–2583 (2009).

  125. 125.

    et al. Printable nanoscopic metamaterial absorbers and images with diffraction-limited resolution. ACS Appl. Mater. Interfaces 8, 11690–11697 (2016).

  126. 126.

    , , , & Engineering metallic nanostructures for plasmonics and nanophotonics. Rep. Prog. Phys. 75, 036501 (2012).

  127. 127.

    , , , & Nanofabrication of plasmonic structures. Annu. Rev. Phys. Chem. 60, 147–165 (2009).

  128. 128.

    , , & Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594–597 (2009).

  129. 129.

    & Nanomanufacturing: a perspective. ACS Nano 10, 2995–3014 (2016).

  130. 130.

    , , & Nanostructures and functional materials fabricated by interferometric lithography. Adv. Mater. 23, 147–179 (2011).

  131. 131.

    & Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays. Opt. Express 22, 18778–18789 (2014).

  132. 132.

    , , & Single-spot e-beam lithography for defining large arrays of nano-holes. Microelectron. Eng. 121, 104–107 (2014).

  133. 133.

    et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat. Commun. 6, 7337 (2015).

  134. 134.

    et al. Fabrication of nanostructures by roll-to-roll extrusion coating. Adv. Eng. Mater. 18 484–489 (2016).

  135. 135.

    , & Structural colour printing from a reusable generic nanosubstrate masked for the target image. Nanotechnology 27, 085301 (2016).

  136. 136.

    et al. Plasmonic colors: toward mass-production of metasurfaces. Adv. Mater. Technol. 1, 1600054 (2016).

  137. 137.

    , , , & Towards do-it-yourself planar optical components using plasmon-assisted etching. Nat. Commun. 7, 10468 (2016).

  138. 138.

    , , & Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6, 2550–2557 (2012).

  139. 139.

    et al. Large area plasmonic color palettes with expanded gamut using colloidal self-assembly. ACS Photonics 3, 627–633 (2016).

  140. 140.

    & Painting and direct writing of silver nanostructures on phosphate glass with electron beam irradiation. Adv. Func. Mater. 25, 5261–5268 (2015).

  141. 141.

    & Direct e-beam writing of colors on (AgI)x (AgPO3)1−x glass. J. Vac. Sci. Technol. B 34, 041605 (2016).

  142. 142.

    , , & Colored ultrathin hybrid photovoltaics with high quantum efficiency. Light Sci. Appl. 3, e215 (2014).

  143. 143.

    et al. Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring. Appl. Surf. Sci. 328, 405–409 (2015).

  144. 144.

    et al. Femtosecond laser color marking stainless steel surface with different wavelengths. Appl. Phys. A 118, 1189–1196 (2015).

  145. 145.

    et al. Scalable, full-colour and controllable chromotropic plasmonic printing. Nat. Commun. 6, 8906 (2015).

  146. 146.

    & Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).

  147. 147.

    , , & A review of roll-to-roll nanoimprint lithography. Nanoscale Res. Lett. 9, 320 (2014).

  148. 148.

    , , & Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays. Adv. Mater. 20, 1129–1134 (2008).

  149. 149.

    , , , & High-resolution plasmonic structural colors from nanohole arrays with bottom metal disks. Opt. Lett. 41, 1400–1403 (2016).

  150. 150.

    et al. Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands. ACS Nano 8, 5535–5542 (2014).

  151. 151.

    , & High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography. Appl. Phys. Lett. 99, 143111 (2011).

  152. 152.

    , , & Multilayer pattern transfer for plasmonic color filter applications. J. Vac. Sci. Technol. B 28, C6O60–C6O63 (2010).

  153. 153.

    & Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3, 2304–2310 (2009).

  154. 154.

    , & Self-assembled plasmonic nanostructures. Chem. Soc. Rev. 43, 3976–3991 (2014).

  155. 155.

    & Assembling color on the nanoscale: multichromatic switchable pixels from plasmonic atoms and molecules. Adv. Mater. 28, 3522–3527 (2016).

  156. 156.

    et al. Structural coloring of glass using dewetted nanoparticles and ultrathin films of metals. ACS Photonics 3, 1194–1201 (2016).

  157. 157.

    et al. Optically tunable plasmonic color filters. Appl. Phys. A 107, 49–54 (2012).

  158. 158.

    et al. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Adv. Mater. 24, OP131–OP135 (2012).

  159. 159.

    et al. High-contrast and fast electrochromic switching enabled by plasmonics. Nat. Commun. 7, 10479 (2016).

  160. 160.

    , , , & Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 10, 1788–1794 (2016).

  161. 161.

    , , , & A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate. Nano Res. 3, 807–812 (2010).

  162. 162.

    , , , & Template-stripped tunable plasmonic devices on stretchable and rollable substrates. ACS Nano 9, 10647–10654 (2015).

  163. 163.

    , & Low-cost and large-area strain sensors based on plasmonic fano resonances. Adv. Opt. Mater. 4, 715–721 (2016).

  164. 164.

    Polarizing and angle-sensitive color filter in transmittance for security feature applications. Adv. Opt. Technol. 4, 71–77 (2015).

  165. 165.

    & Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007).

  166. 166.

    et al. Ordered Au nanocrystals on a substrate formed by light-induced rapid annealing. Nanoscale 6, 1756–1762 (2014).

  167. 167.

    et al. Fabrication of hybrid nanostructures via nanoscale laser-induced reshaping for advanced light manipulation. Adv. Mater. 28, 3087–3093 (2016).

  168. 168.

    , , , & Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996).

  169. 169.

    & Colorizing metals with femtosecond laser pulses. Appl. Phys. Lett. 92, 041914 (2008).

  170. 170.

    , & Disposable plasmonics: rapid and inexpensive large area patterning of plasmonic structures with CO2 laser annealing. Langmuir 31, 5252–5258 (2015).

  171. 171.

    , & Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009).

  172. 172.

    , , & , Plasmon-assisted audio recording. Sci. Rep. 5, 9125 (2015).

  173. 173.

    et al. Imaging through plasmonic nanoparticles. Proc. Natl Acad. Sci. USA 113, 5558–5563 (2016).

  174. 174.

    , , , & Nanoscale CMOS. Proc. IEEE 87, 537–570 (1999).

  175. 175.

    , , , & Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity. Nat. Commun. 6, 7133 (2015).

  176. 176.

    et al. Plasmonic films can easily be better: rules and recipes. ACS Photonics 2, 326–333 (2015).

  177. 177.

    et al. Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010).

  178. 178.

    , & Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).

  179. 179.

    , , & Localized surface plasmon resonances in aluminum nanodisks. Nano Lett. 8, 1461–1471 (2008).

  180. 180.

    et al. Aluminum for plasmonics. ACS Nano 8, 834–840 (2014).

  181. 181.

    , , & Color-selective and CMOS-compatible photodetection based on aluminum plasmonics. Adv. Mater. 26, 6318–6323 (2014).

  182. 182.

    How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10, 2–6 (2015).

  183. 183.

    & General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006).

  184. 184.

    et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).

  185. 185.

    , & Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).

  186. 186.

    et al. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4, 1664–1670 (2010).

  187. 187.

    et al. Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film. Nano Lett. 15, 6946–6951 (2015).

  188. 188.

    et al. Ultra sub-wavelength surface plasmon confinement using airgap, subwavelength ring resonator arrays. Sci. Rep. 6, 22305 (2016).

  189. 189.

    et al. Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing. ACS Nano 9, 10628–10636 (2015).

  190. 190.

    , , & Colorimetric detection based on localised surface plasmon resonance of gold nanoparticles: merits, inherent shortcomings and future prospects. Talanta 152, 410–422 (2016).

  191. 191.

    , , , & Nanophotonic image sensors. Small 12, 4922–4935 (2016).

  192. 192.

    , & Colour measurement. Nature 149, 76 (1942).

  193. 193.

    et al. Magnetic light: optical magnetism of dielectric nanoparticles. Opt. Photonics News 23, 35 (2012).

  194. 194.

    Plasmonics: Fundamentals and Applications (Springer, 2007).

  195. 195.

    , & Light scattering and surface plasmons on small spherical particles. Light Sci. Appl. 3, e179 (2014).

  196. 196.

    & Slow-plasmon resonant nanostructures: scattering and field enhancements. Phys. Rev. B 75, 073402 (2007).

  197. 197.

    , & Numerical methods for nanophotonics: standard problems and future challenges. Laser Photonics Rev. 9, 577–603 (2015).

Download references

Acknowledgements

This work was supported by the European Commission through the FP7MMP Integrated project PLAST4FUTURE (NMP2-SE-2012-314345) and the International Network Programme of the Danish Agency for Science, Technology and Innovation (ALSCIN 5132-00070B). J.K.W.Y. acknowledges financial support from A*STAR Joint Council Office (Grant No. 14302FG092), SUTD International Design Centre (IDC) and SUTD Digital Manufacturing and Design Centre (DManD). S.I.B. acknowledges financial support from the European Research Council, Grant 341054 (PLAQNAP). The Rice group acknowledges support from the Robert A. Welch Foundation under grants C-1664 (S.L.), C-1222 (P.N.) and C-1220 (N.J.H.), and the Army Research Office under grant W911NF-12-1-0407.

Author information

Affiliations

  1. Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.

    • Anders Kristensen
  2. Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372.

    • Joel K. W. Yang
  3. Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634.

    • Joel K. W. Yang
  4. Centre for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark.

    • Sergey I. Bozhevolnyi
  5. Department of Chemistry, Rice University, Houston, Texas 77005, USA.

    • Stephan Link
    • , Peter Nordlander
    •  & Naomi J. Halas
  6. Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, USA.

    • Stephan Link
    • , Peter Nordlander
    •  & Naomi J. Halas
  7. Department of Physics, Rice University, Houston, Texas 77005, USA.

    • Peter Nordlander
    •  & Naomi J. Halas
  8. Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.

    • N. Asger Mortensen

Authors

  1. Search for Anders Kristensen in:

  2. Search for Joel K. W. Yang in:

  3. Search for Sergey I. Bozhevolnyi in:

  4. Search for Stephan Link in:

  5. Search for Peter Nordlander in:

  6. Search for Naomi J. Halas in:

  7. Search for N. Asger Mortensen in:

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Anders Kristensen or N. Asger Mortensen.