Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hydrogen carriers

Abstract

Hydrogen has the potential to be a major energy vector in a renewable and sustainable future energy mix. The efficient production, storage and delivery of hydrogen are key technical issues that require improvement before its potential can be realized. In this Review, we focus on recent advances in materials development for on-board hydrogen storage. We highlight the strategic design and optimization of hydrides of light-weight elements (for example, boron, nitrogen and carbon) and physisorbents (for example, metal–organic and covalent organic frameworks). Furthermore, hydrogen carriers (for example, NH3, CH3OH–H2O and cycloalkanes) for large-scale distribution and for on-site hydrogen generation are discussed with an emphasis on dehydrogenation catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of representative materials for hydrogen distribution, on-site generation and on-board storage.
Figure 2: Tuning dehydrogenation thermodynamics.
Figure 3: Porous polymers and covalent organic frameworks for hydrogen storage.
Figure 4: Illustration of the hybrid system.

Similar content being viewed by others

References

  1. Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

    CAS  Google Scholar 

  2. Orimo, S.-i., Nakamori, Y., Eliseo, J. R., Züttel, A. & Jensen, C. M. Complex hydrides for hydrogen storage. Chem. Rev. 107, 4111–4132 (2007).

    CAS  Google Scholar 

  3. Eberle, U., Felderhoff, M. & Schuth, F. Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. 48, 6608–6630 (2009).

    CAS  Google Scholar 

  4. Yang, J., Sudik, A., Wolverton, C. & Siegel, D. J. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 39, 656–675 (2010).

    CAS  Google Scholar 

  5. Klerke, A., Christensen, C. H., Norskov, J. K. & Vegge, T. Ammonia for hydrogen storage: challenges and opportunities. J. Mater. Chem. 18, 2304–2310 (2008).

    CAS  Google Scholar 

  6. Crabtree, R. H. Hydrogen storage in liquid organic heterocycles. Energy Environ. Sci. 1, 134–138 (2008).

    CAS  Google Scholar 

  7. Palo, D. R., Dagle, R. A. & Holladay, J. D. Methanol steam reforming for hydrogen production. Chem. Rev. 107, 3992–4021 (2007).

    CAS  Google Scholar 

  8. Zhu, Q.-L. & Xu, Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ. Sci. 8, 478–512 (2015).

    CAS  Google Scholar 

  9. Pasini, J. M. et al. Metal hydride material requirements for automotive hydrogen storage systems. Int. J. Hydrogen Energy 38, 9755–9765 (2013).

    CAS  Google Scholar 

  10. Züttel, A. et al. LiBH4 a new hydrogen storage material. J. Power Sources 118, 1–7 (2003). LiBH4, now one of the most intensively studied hydrides, was investigated for the first time in this paper as a H2 storage material.

    Google Scholar 

  11. Chen, P., Xiong, Z., Luo, J., Lin, J. & Tan, K. L. Interaction of hydrogen with metal nitrides and imides. Nature 420, 302–304 (2002). This is the pioneering work on amide hydrides for H2 storage, which further initiated research into reactive composite systems for H2 storage.

    CAS  Google Scholar 

  12. Gutowska, A. et al. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew. Chem. Int. Ed. 44, 3578–3582 (2005). This work demonstrated that confining ammonia borane in a nanoporous SBA-15 scaffold led to significantly improved dehydrogenation properties, and thus, stimulated research into nanoconfinement.

    CAS  Google Scholar 

  13. Biniwale, R. B., Rayalu, S., Devotta, S. & Ichikawa, M. Chemical hydrides: a solution to high capacity hydrogen storage and supply. Int. J. Hydrogen Energy 33, 360–365 (2008).

    CAS  Google Scholar 

  14. Rosi, N. L. et al. Hydrogen storage in microporous metal–organic frameworks. Science 300, 1127–1129 (2003). This is the pioneering work in which MOFs were first used as an efficient physisorbent for storing H2.

    CAS  Google Scholar 

  15. Bogdanović, B. & Schwickardi, M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloys Compd. 253–254, 1–9 (1997).

  16. Pez, G. P., Scott, A. R., Cooper, A. C. & Cheng, H. Hydrogen storage by reversible hydrogenation of pi-conjugated substrates. US patent 7101530 (2006). This patent demonstrated for the first time that heterocyclic compounds possess better thermodynamic properties than their hydrocarbon counterparts and thus show promise for on-board applications.

  17. Grochala, W. & Edwards, P. P. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem. Rev. 104, 1283–1316 (2004).

    CAS  Google Scholar 

  18. Chlopek, K., Frommen, C., Léon, A., Zabara, O. & Fichtner, M. Synthesis and properties of magnesium tetrahydroborate, Mg(BH4)2 . J. Mater. Chem. 17, 3496–3503 (2007).

    CAS  Google Scholar 

  19. Xiong, Z. et al. High-capacity hydrogen storage in lithium and sodium amidoboranes. Nat. Mater. 7, 138–141 (2008).

    CAS  Google Scholar 

  20. Diyabalanage, H. V. K. et al. Calcium amidotrihydroborate: a hydrogen storage material. Angew. Chem. Int. Ed. 46, 8995–8997 (2007).

    Google Scholar 

  21. Wu, H. et al. Metal hydrazinoborane LiN2H3BH3 and LiN2H3BH3•2N2H4BH3: crystal structures and high-extent dehydrogenation. Energy Environ. Sci. 5, 7531–7535 (2012).

    CAS  Google Scholar 

  22. Chen, J. et al. Lithiated primary amine — a new material for hydrogen storage. Chem. Eur. J. 20, 6632–6635 (2014).

    CAS  Google Scholar 

  23. Nickels, E. A. et al. Tuning the decomposition temperature in complex hydrides: synthesis of a mixed alkali metal borohydride. Angew. Chem. Int. Ed. 47, 2817–2819 (2008).

    CAS  Google Scholar 

  24. Hagemann, H. et al. LiSc(BH4)4: a novel salt of Li+ and discrete Sc(BH4)4 complex anions. J. Phys. Chem. A 112, 7551–7555 (2008).

    CAS  Google Scholar 

  25. Wu, H. et al. Sodium magnesium amidoborane: the first mixed-metal amidoborane. Chem. Commun. 47, 4102–4104 (2011).

    CAS  Google Scholar 

  26. Orimo, S.-I. et al. Experimental studies on intermediate compound of LiBH4 . Appl. Phys. Lett. 89, 021920 (2006).

    Google Scholar 

  27. Li, H. W. et al. Effects of ball milling and additives on dehydriding behaviors of well-crystallized Mg(BH4)2 . Scr. Mater. 57, 679–682 (2007).

    CAS  Google Scholar 

  28. Soloveichik, G. L. et al. Magnesium borohydride as a hydrogen storage material: properties and dehydrogenation pathway of unsolvated Mg(BH4)2 . Int. J. Hydrogen Energy 34, 916–928 (2009).

    CAS  Google Scholar 

  29. Ravnsbaek, D. et al. A series of mixed-metal borohydrides. Angew. Chem. Int. Ed. 48, 6659–6663 (2009).

    CAS  Google Scholar 

  30. Kim, D. Y., Singh, N. J., Lee, H. M. & Kim, K. S. Hydrogen-release mechanisms in lithium amidoboranes. Chem. Euro. J. 15, 5598–5604 (2009).

    CAS  Google Scholar 

  31. Akbarzadeh, A. R., Ozolins, V. & Wolverton, C. First-principles determination of multicomponent hydride phase diagrams: application to the Li-Mg-N-H system. Adv. Mater. 19, 3233–3239 (2007).

    CAS  Google Scholar 

  32. Alapati, S. V., Johnson, J. K. & Sholl, D. S. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. J. Phys. Chem. B 110, 8769–8776 (2006).

    CAS  Google Scholar 

  33. Vajo, J. J., Skeith, S. L. & Mertens, F. Reversible storage of hydrogen in destabilized LiBH4 . J. Phys. Chem. B 109, 3719–3722 (2005). This work demonstrated that the compositing of 2LiBH4 and MgH2 resulted in significantly improved thermodynamics for H2 storage.

    CAS  Google Scholar 

  34. Xiong, Z., Wu, G., Hu, J. & Chen, P. Ternary imides for hydrogen storage. Adv. Mater. 16, 1522–1525 (2004).

    CAS  Google Scholar 

  35. Luo, W. F. (LiNH2–MgH2): a viable hydrogen storage system. J. Alloys Compd. 381, 284–287 (2004).

    CAS  Google Scholar 

  36. Leng, H. Y. et al. New metal-N-H system composed of Mg(NH2)2 and LiH for hydrogen storage. J. Phys. Chem. B 108, 8763–8765 (2004).

    CAS  Google Scholar 

  37. Bosenberg, U. et al. Hydrogen sorption properties of MgH2–LiBH4 composites. Acta Mater. 55, 3951–3958 (2007).

    Google Scholar 

  38. Soloveichik, G. et al. Ammine magnesium borohydride complex as a new material for hydrogen storage: structure and properties of mg(BH4)2·2NH3 . Inorg. Chem. 47, 4290–4298 (2008).

    CAS  Google Scholar 

  39. He, T. et al. Borohydride hydrazinates: high hydrogen content materials for hydrogen storage. Energy Environ. Sci. 5, 5686–5689 (2012).

    CAS  Google Scholar 

  40. Chua, Y. S. et al. Synthesis, structure and dehydrogenation of magnesium amidoborane monoammoniate. Chem. Commun. 46, 5752–5754 (2010).

    CAS  Google Scholar 

  41. Guo, Y., Yu, X., Sun, W., Sun, D. & Yang, W. The hydrogen-enriched Al–B–N system as an advanced solid hydrogen-storage candidate. Angew. Chem. Int. Ed. 50, 1087–1091 (2011).

    CAS  Google Scholar 

  42. Luo, W., Zakharov, L. N. & Liu, S.-Y. 1,2-BN cyclohexane: synthesis, structure, dynamics, and reactivity. J. Am. Chem. Soc. 133, 13006–13009 (2011).

    CAS  Google Scholar 

  43. Wu, H., Zhou, W. & Yildirim, T. Alkali and alkaline-earth metal amidoboranes: structure, crystal chemistry, and hydrogen storage properties. J. Am. Chem. Soc. 130, 14834–14839 (2008).

    CAS  Google Scholar 

  44. Diyabalanage, H. V. K. et al. Potassium(I) amidotrihydroborate: structure and hydrogen release. J. Am. Chem. Soc. 132, 11836–11837 (2010).

    CAS  Google Scholar 

  45. Chua, Y. S. et al. Alkali metal hydride modification on hydrazine borane for improved dehydrogenation. J. Phys. Chem. C 118, 11244–11251 (2014).

    CAS  Google Scholar 

  46. Nakamori, Y. et al. Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites: first-principles calculations and experiments. Phys. Rev. B 74, 045126 (2006).

    Google Scholar 

  47. Graetz, J. New approaches to hydrogen storage. Chem. Soc. Rev. 38, 73–82 (2009).

    CAS  Google Scholar 

  48. Schouwink, P. et al. Structure and properties of complex hydride perovskite materials. Nat. Commun. 5, 5706 (2014).

    CAS  Google Scholar 

  49. Cerny, R. et al. AZn2(BH4)5 (A = Li, Na) and NaZn(BH4)3: structural studies. J. Phys. Chem. C 114, 19127–19133 (2010).

    CAS  Google Scholar 

  50. Filinchuk, Y. et al. Porous and dense magnesium borohydride frameworks: synthesis, stability, and reversible absorption of guest species. Angew. Chem. Int. Ed. 50, 11162–11166 (2011).

    CAS  Google Scholar 

  51. Rude, L. H. et al. Synthesis and structural investigation of Zr(BH4)4 . J. Phys. Chem. C 116, 20239–20245 (2012).

    CAS  Google Scholar 

  52. Kang, X., Luo, J., Zhang, Q. & Wang, P. Combined formation and decomposition of dual-metal amidoborane NaMg(NH2BH3)3 for high-performance hydrogen storage. Dalton Trans. 40, 3799–3801 (2011).

    CAS  Google Scholar 

  53. Fijalkowski, K. J. et al. Na[Li(NH2BH3)2] — the first mixed-cation amidoborane with unusual crystal structure. Dalton Trans. 40, 4407–4413 (2011).

    CAS  Google Scholar 

  54. Udovic, T. J. et al. Exceptional superionic conductivity in disordered sodium decahydro-closo-decaborate. Adv. Mater. 26, 7622–7626 (2014).

    CAS  Google Scholar 

  55. Unemoto, A., Matsuo, M. & Orimo, S.-i. Complex hydrides for electrochemical energy storage. Adv. Funct. Mater. 24, 2267–2279 (2014).

    CAS  Google Scholar 

  56. Matsuo, M. & Orimo, S.-i. Lithium fast-ionic conduction in complex hydrides: review and prospects. Adv. Energy Mater. 1, 161–172 (2011).

    CAS  Google Scholar 

  57. David, W. I. F. et al. A mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction. J. Am. Chem. Soc. 129, 1594–1601 (2007).

    CAS  Google Scholar 

  58. Rijssenbeek, J. et al. Crystal structure determination and reaction pathway of amide–hydride mixtures. J. Alloys Compd. 454, 233–244 (2008).

    CAS  Google Scholar 

  59. Wu, H. Structure of ternary imide Li2Ca(NH)2 and hydrogen storage mechanisms in amide–hydride system. J. Am. Chem. Soc. 130, 6515–6522 (2008).

    CAS  Google Scholar 

  60. Verdal, N., Udovic, T. J., Rush, J. J., Wu, H. & Skripov, A. V. Evolution of the reorientational motions of the tetrahydroborate anions in hexagonal LiBH4–Lil solid solution by high-Q quasielastic neutron scattering. J. Phys. Chem. C 117, 12010–12018 (2013).

    CAS  Google Scholar 

  61. Rude, L. H. et al. Bromide substitution in lithium borohydride, LiBH4–LiBr. Int. J. Hydrogen Energy 36, 15664–15672 (2011).

    CAS  Google Scholar 

  62. Wu, H. et al. A new family of metal borohydride ammonia borane complexes: synthesis, structures, and hydrogen storage properties. J. Mater. Chem. 20, 6550–6556 (2010).

    CAS  Google Scholar 

  63. Luo, J., Wu, H., Zhou, W., Kang, X. & Wang, P. Li2(NH2BH3)(BH4)/LiNH2BH3: the first metal amidoborane borohydride complex with inseparable amidoborane precursor for hydrogen storage. Int. J. Hydrogen Energy 38, 197–204 (2013).

    CAS  Google Scholar 

  64. Gu, Q. et al. Structure and decomposition of zinc borohydride ammonia adduct: towards a pure hydrogen release. Energy Environ. Sci. 5, 7590–7600 (2012).

    CAS  Google Scholar 

  65. Kang, X., Wu, H., Luo, J., Zhou, W. & Wang, P. A simple and efficient approach to synthesize amidoborane ammoniates: case study for Mg(NH2BH3)2(NH3)3 with unusual coordination structure. J. Mater. Chem. 22, 13174–13179 (2012).

    CAS  Google Scholar 

  66. He, T. et al. Nanosized Co- and Ni-catalyzed ammonia borane for hydrogen storage. Chem. Mater. 21, 2315–2318 (2009).

    CAS  Google Scholar 

  67. Yan, J.-M., Zhang, X.-B., Han, S., Shioyama, H. & Xu, Q. Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Angew. Chem. Int. Ed. 120, 2319–2321 (2008).

    Google Scholar 

  68. Pinkerton, F. E., Meyer, M. S., Meisner, G. P. & Balogh, M. P. Improved hydrogen release from LiB0.33N0.67H2.67 with metal additives: Ni, Fe, and Zn. J. Alloys Compd. 433, 282–291 (2007).

    CAS  Google Scholar 

  69. Singh, S. K. & Xu, Q. Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen storage. J. Am. Chem. Soc. 131, 18032–18033 (2009).

    CAS  Google Scholar 

  70. Denney, M. C., Pons, V., Hebden, T. J., Heinekey, D. M. & Goldberg, K. I. Efficient catalysis of ammonia borane dehydrogenation. J. Am. Chem. Soc. 128, 12048–12049 (2006).

    CAS  Google Scholar 

  71. Wang, Z., Tonks, I., Belli, J. & Jensen, C. M. Dehydrogenation of N-ethyl perhydrocarbazole catalyzed by PCP pincer iridium complexes: evaluation of a homogenous hydrogen storage system. J. Organomet. Chem. 694, 2854–2857 (2009).

    CAS  Google Scholar 

  72. Au, M. & Jurgensen, A. Modified lithium borohydrides for reversible hydrogen storage. J. Phys. Chem. B 110, 7062–7067 (2006).

    CAS  Google Scholar 

  73. Callini, E., Borgschulte, A., Hugelshofer, C. L., Ramirez-Cuesta, A. J. & Zuettel, A. The role of Ti in alanates and borohydrides: catalysis and metathesis. J. Phys. Chem. C 118, 77–84 (2014).

    CAS  Google Scholar 

  74. Bosenberg, U. et al. Role of additives in LiBH4–MgH2 reactive hydride composites for sorption kinetics. Acta Mater. 58, 3381–3389 (2010).

    Google Scholar 

  75. Wang, J. et al. Potassium-modified Mg(NH2)2/2LiH system for hydrogen storage. Angew. Chem. Int. Ed. 48, 5828–5832 (2009).

    CAS  Google Scholar 

  76. Li, C., Liu, Y., Gu, Y., Gao, M. & Pan, H. Improved hydrogen-storage thermodynamics and kinetics for an RbF-doped Mg(NH2)2–2LiH system. Chem. Asian J. 8, 2136–2143 (2013).

    CAS  Google Scholar 

  77. Sakintuna, B., Lamari-Darkrim, F. & Hirscher, M. Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrogen Energy 32, 1121–1140 (2007).

    CAS  Google Scholar 

  78. Liu, Y. et al. Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system. J. Am. Chem. Soc. 131, 1862–1870 (2009).

    CAS  Google Scholar 

  79. de Jongh, P. E., Allendorf, M., Vajo, J. J. & Zlotea, C. Nanoconfined light metal hydrides for reversible hydrogen storage. MRS Bull. 38, 488–494 (2013).

    CAS  Google Scholar 

  80. Nielsen, T. K., Besenbacher, F. & Jensen, T. R. Nanoconfined hydrides for energy storage. Nanoscale 3, 2086–2098 (2011).

    CAS  Google Scholar 

  81. Gross, A. F., Vajo, J. J., Van Atta, S. L. & Olson, G. L. Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds. J. Phys. Chem. C 112, 5651–5657 (2008).

    CAS  Google Scholar 

  82. Feaver, A. et al. Coherent carbon cryogel–ammonia borane nanocomposites for H2 storage. J. Phys. Chem. B 111, 7469–7472 (2007).

    CAS  Google Scholar 

  83. Li, Z., Zhu, G., Lu, G., Qiu, S. & Yao, X. Ammonia borane confined by a metal–organic framework for chemical hydrogen storage: enhancing kinetics and eliminating ammonia. J. Am. Chem. Soc. 132, 1490–1491 (2010).

    CAS  Google Scholar 

  84. Zhao, J. et al. A soft hydrogen storage material: poly(methyl acrylate)-confined ammonia borane with controllable dehydrogenation. Adv. Mater. 22, 394–397 (2010).

    CAS  Google Scholar 

  85. Fang, Z. Z. et al. Kinetic- and thermodynamic-based improvements of lithium borohydride incorporated into activated carbon. Acta Mater. 56, 6257–6263 (2008).

    CAS  Google Scholar 

  86. Nielsen, T. K. et al. A reversible nanoconfined chemical reaction. ACS Nano 4, 3903–3908 (2010).

    CAS  Google Scholar 

  87. Demir-Cakan, R., Tang, W. S., Darwiche, A & Janot, R. Modification of the hydrogen storage properties of Li3N by confinement into mesoporous carbons. Energy Environ. Sci. 4, 3625–3631 (2011).

    CAS  Google Scholar 

  88. Ngene, P. et al. The role of Ni in increasing the reversibility of the hydrogen release from nanoconfined LiBH4 . Faraday Discuss. 151, 47–58 (2011).

    CAS  Google Scholar 

  89. Zhou, H.-C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

    CAS  Google Scholar 

  90. Kitagawa, S. & Uemura, K. Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chem. Soc. Rev. 34, 109–119 (2005).

    CAS  Google Scholar 

  91. Farha, O. K. et al. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012).

    CAS  Google Scholar 

  92. Xu, Y., Jin, S., Xu, H., Nagai, A. & Jiang, D. Conjugated microporous polymers: design, synthesis and application. Chem. Soc. Rev. 42, 8012–8031 (2013).

    CAS  Google Scholar 

  93. Ding, S.-Y. & Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42, 548–568 (2013).

    CAS  Google Scholar 

  94. Ströbel, R., Garche, J., Moseley, P. T., Jörissen, L. & Wolf, G. Hydrogen storage by carbon materials. J. Power Sources 159, 781–801 (2006).

    Google Scholar 

  95. Bae, Y.-S. & Snurr, R. Q. Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal–organic frameworks. Micropor. Mesopor. Mater. 132, 300–303 (2010).

    CAS  Google Scholar 

  96. Murray, L. J., Dinca, M. & Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009).

    CAS  Google Scholar 

  97. Ferey, G. et al. Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2) (M = Al3+, Cr3+), MIL-53. Chem. Commun. 2003, 2976–2977 (2003).

    Google Scholar 

  98. Wang, Z., Tanabe, K. K. & Cohen, S. M. Tuning hydrogen sorption properties of metal–organic frameworks by postsynthetic covalent modification. Chem. Euro. J. 16, 212–217 (2010).

    Google Scholar 

  99. Rowsell, J. L. C., Millward, A. R., Park, K. S. & Yaghi, O. M. Hydrogen sorption in functionalized metal–organic frameworks. J. Am. Chem. Soc. 126, 5666–5667 (2004).

    CAS  Google Scholar 

  100. Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    CAS  Google Scholar 

  101. Wong-Foy, A. G., Matzger, A. J. & Yaghi, O. M. Exceptional H2 saturation uptake in microporous metal–organic frameworks. J. Am. Chem. Soc. 128, 3494–3495 (2006).

    CAS  Google Scholar 

  102. Lin, X. et al. High H2 adsorption by coordination-framework materials. Angew. Chem. Int. Ed. 45, 7358–7364 (2006).

    CAS  Google Scholar 

  103. Yan, Y., Yang, S., Blake, A. J. & Schröder, M. Studies on metal–organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage. Acc. Chem. Res. 47, 296–307 (2014).

    CAS  Google Scholar 

  104. Sumida, K., Hill, M. R., Horike, S., Dailly, A. & Long, J. R. Synthesis and hydrogen storage properties of Be12(OH)12(1,3,5-benzenetribenzoate)4 . J. Am. Chem. Soc. 131, 15120–15121 (2009).

    CAS  Google Scholar 

  105. He, Y. & Chen, B. in Encyclopedia of Inorganic and Bioinorganic Chemistry (John Wiley & Sons, 2011).

    Google Scholar 

  106. Kapelewski, M. T. et al. M2(m-dobdc) (M = Mg, Mn, Fe, Co, Ni) metal–organic frameworks exhibiting increased charge density and enhanced H2 binding at the open metal sites. J. Am. Chem. Soc. 136, 12119–12129 (2014). The contribution of unsaturated metal sites for increased H2 binding enthalpies and close packing of H2 molecules within the framework are summarized in this article, along with the first-principles electronic structure calculations elucidating how the subtle structural and electronic differences give rise to increased H2 binding enthalpies.

    CAS  Google Scholar 

  107. Xiao, B. et al. High-capacity hydrogen and nitric oxide adsorption and storage in a metal–organic framework. J. Am. Chem. Soc. 129, 1203–1209 (2007).

    CAS  Google Scholar 

  108. Rousseau, R. et al. Defining active catalyst structure and reaction pathways from ab initio molecular dynamics and operando XAFS: dehydrogenation of dimethylaminoborane by rhodium clusters. J. Am. Chem. Soc. 131, 10516–10524 (2009).

    CAS  Google Scholar 

  109. Lee, Y.-G., Moon, H. R., Cheon, Y. E. & Suh, M. P. A comparison of the H2 sorption capacities of isostructural metal–organic frameworks with and without accessible metal sites: [{Zn2(abtc)(dmf)2}3] and [{Cu2(abtc)(dmf)2}3] versus [{Cu2(abtc)}3]. Angew. Chem. Int. Ed. 47, 7741–7745 (2008).

    CAS  Google Scholar 

  110. Dincaˇ, M. et al. Hydrogen storage in a microporous metal–organic framework with exposed Mn2+ coordination sites. J. Am. Chem. Soc. 128, 16876–16883 (2006).

    Google Scholar 

  111. Mueller, U. et al. Metal–organic frameworks-prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006).

    CAS  Google Scholar 

  112. Belof, J. L., Stern, A. C., Eddaoudi, M. & Space, B. On the mechanism of hydrogen storage in a metal–organic framework material. J. Am. Chem. Soc. 129, 15202–15210 (2007).

    CAS  Google Scholar 

  113. Ryan, P., Broadbelt, L. J. & Snurr, R. Q. Is catenation beneficial for hydrogen storage in metal–organic frameworks? Chem. Commun. 2008, 4132–4134 (2008).

    Google Scholar 

  114. Ma, S. et al. Framework-catenation isomerism in metal–organic frameworks and its impact on hydrogen uptake. J. Am. Chem. Soc. 129, 1858–1859 (2007).

    CAS  Google Scholar 

  115. Pachfule, P., Chen, Y., Jiang, J. & Banerjee, R. Experimental and computational approach of understanding the gas adsorption in amino functionalized interpenetrated metal organic frameworks (MOFs). J. Mater. Chem. 21, 17737–17745 (2011).

    CAS  Google Scholar 

  116. Liu, X. et al. A twofold interpenetrating porous metal–organic framework with high hydrothermal stability: structure and gas sorption behavior. Inorg. Chem. 48, 11507–11509 (2009).

    CAS  Google Scholar 

  117. Kim, H. et al. Synthesis of phase-pure interpenetrated MOF-5 and its gas sorption properties. Inorg. Chem. 50, 3691–3696 (2011).

    CAS  Google Scholar 

  118. Yang, S. et al. Enhancement of H2 adsorption in coordination framework materials by use of ligand curvature. Chem. Euro. J. 15, 4829–4835 (2009).

    CAS  Google Scholar 

  119. Hulvey, Z., Falcao, E. H. L., Eckert, J. & Cheetham, A. K. Enhanced H2 adsorption enthalpy in the low-surface area, partially fluorinated coordination polymer Zn5(triazole)6(tetrafluoroterephthalate)2(H2O)2·4H2O. J. Mater. Chem. 19, 4307–4309 (2009).

    CAS  Google Scholar 

  120. Yang, C., Wang, X. & Omary, M. A. Fluorous metal–organic frameworks for high-density gas adsorption. J. Am. Chem. Soc. 129, 15454–15455 (2007).

    CAS  Google Scholar 

  121. Pan, L. et al. Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. J. Am. Chem. Soc. 126, 1308–1309 (2004).

    CAS  Google Scholar 

  122. Klontzas, E., Mavrandonakis, A., Tylianakis, E. & Froudakis, G. E. Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms. Nano Lett. 8, 1572–1576 (2008).

    Google Scholar 

  123. Himsl, D., Wallacher, D. & Hartmann, M. Improving the hydrogen-adsorption properties of a hydroxy-modified MIL-53(Al) structural analogue by lithium doping. Angew. Chem. Int. Ed. 48, 4639–4642 (2009).

    CAS  Google Scholar 

  124. Lim, D.-W., Chyun, S. A. & Suh, M. P. Hydrogen storage in a potassium-ion-bound metal–organic framework incorporating crown ether struts as specific cation binding sites. Angew. Chem. Int. Ed. 126, 7953–7956 (2014).

    Google Scholar 

  125. Mulfort, K. L., Farha, O. K., Stern, C. L., Sarjeant, A. A. & Hupp, J. T. Post-synthesis alkoxide formation within metal–organic framework materials: a strategy for incorporating highly coordinatively unsaturated metal ions. J. Am. Chem. Soc. 131, 3866–3868 (2009).

    CAS  Google Scholar 

  126. Yang, S. et al. Enhancement of H2 adsorption in Li+-exchanged co-ordination framework materials. Chem. Commun. 2008, 6108–6110 (2008).

    Google Scholar 

  127. Han, S. S. & Goddard, W. A. Lithium-doped metal–organic frameworks for reversible H2 storage at ambient temperature. J. Am. Chem. Soc. 129, 8422–8423 (2007).

    CAS  Google Scholar 

  128. Miller, M. A., Wang, C.-Y. & Merrill, G. N. Experimental and theoretical investigation into hydrogen storage via spillover in IRMOF-8. J. Phys. Chem. C 113, 3222–3231 (2009).

    CAS  Google Scholar 

  129. Cheon, Y. E. & Suh, M. P. Enhanced hydrogen storage by palladium nanoparticles fabricated in a redox-active metal–organic framework. Angew. Chem. Int. Ed. 48, 2899–2903 (2009).

    CAS  Google Scholar 

  130. Contescu, C. I., Brown, C. M., Liu, Y., Bhat, V. V. & Gallego, N. C. Detection of hydrogen spillover in palladium-modified activated carbon fibers during hydrogen adsorption. J. Phys. Chem. C 113, 5886–5890 (2009).

    CAS  Google Scholar 

  131. Li, Y. & Yang, R. T. Hydrogen storage in metal–organic frameworks by bridged hydrogen spillover. J. Am. Chem. Soc. 128, 8136–8137 (2006).

    CAS  Google Scholar 

  132. Zlotea, C. et al. Pd nanoparticles embedded into a metal–organic framework: synthesis, structural characteristics, and hydrogen sorption properties. J. Am. Chem. Soc. 132, 2991–2997 (2010).

    CAS  Google Scholar 

  133. Liu, S. S. et al. Gold supported on titania for specific monohydrogenation of dinitroaromatics in the liquid phase. Green Chem. 16, 4162–4169 (2014).

    CAS  Google Scholar 

  134. Campesi, R., Cuevas, F., Latroche, M. & Hirscher, M. Hydrogen spillover measurements of unbridged and bridged metal–organic frameworks-revisited. Phys. Chem. Chem. Phys. 12, 10457–10459 (2010).

    CAS  Google Scholar 

  135. Szilagyi, P. A. et al. Probing hydrogen spillover in Pd@MIL-101(Cr) with a focus on hydrogen chemisorption. Phys. Chem. Chem. Phys. 16, 5803–5809 (2014).

    CAS  Google Scholar 

  136. Yuan, D., Lu, W., Zhao, D. & Zhou, H.-C. Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv. Mater. 23, 3723–3725 (2011).

    CAS  Google Scholar 

  137. Ben, T. et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 121, 9621–9624 (2009).

    Google Scholar 

  138. Jiang, J.-X. et al. Conjugated microporous poly(phenylene butadiynylene)s. Chem. Commun. 2008, 486–488 (2008).

    Google Scholar 

  139. Yuan, S. et al. Microporous polyphenylenes with tunable pore size for hydrogen storage. Chem. Commun. 46, 4547–4549 (2010).

    CAS  Google Scholar 

  140. Colson, J. W. & Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 5, 453–465 (2013).

    CAS  Google Scholar 

  141. Furukawa, H. & Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009).

    CAS  Google Scholar 

  142. Han, S. S., Furukawa, H., Yaghi, O. M. & Goddard, W. A. Covalent organic frameworks as exceptional hydrogen storage materials. J. Am. Chem. Soc. 130, 11580–11581 (2008).

    CAS  Google Scholar 

  143. Kuhn, P., Forget, A., Su, D., Thomas, A. & Antonietti, M. From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks. J. Am. Chem. Soc. 130, 13333–13337 (2008).

    CAS  Google Scholar 

  144. Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008). This article details the synthesis and applications of nitrogen-rich covalent triazine framework for H2 absorption.

    CAS  Google Scholar 

  145. Wan, S. et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23, 4094–4097 (2011).

    CAS  Google Scholar 

  146. Kandambeth, S. et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134, 19524–19527 (2012).

    CAS  Google Scholar 

  147. Cao, D., Lan, J., Wang, W. & Smit, B. Lithium-doped 3D covalent organic frameworks: high-capacity hydrogen storage materials. Angew. Chem. Int. Ed. 48, 4730–4733 (2009).

    CAS  Google Scholar 

  148. Kalidindi, S. B. et al. Metal@COFs: covalent organic frameworks as templates for Pd nanoparticles and hydrogen storage properties of Pd@COF-102 hybrid material. Chem. Eur. J. 18, 10848–10856 (2012).

    CAS  Google Scholar 

  149. Züttel, A. Materials for hydrogen storage. Mater. Today 6, 24–33 (2003).

    Google Scholar 

  150. Titirici, M.-M. et al. Sustainable carbon materials. Chem. Soc. Rev. 44, 250–290 (2015).

    CAS  Google Scholar 

  151. Sevilla, M. & Mokaya, R. Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 7, 1250–1280 (2014).

    CAS  Google Scholar 

  152. Ryoo, R., Joo, S. H., Kruk, M. & Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 13, 677–681 (2001).

    CAS  Google Scholar 

  153. Nishihara, H. & Kyotani, T. Templated nanocarbons for energy storage. Adv. Mater. 24, 4473–4498 (2012).

    CAS  Google Scholar 

  154. Liu, B., Shioyama, H., Akita, T. & Xu, Q. Metal–organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130, 5390–5391 (2008).

    CAS  Google Scholar 

  155. Aijaz, A., Akita, T., Yang, H. & Xu, Q. From ionic-liquid@metal–organic framework composites to heteroatom-decorated large-surface area carbons: superior CO2 and H2 uptake. Chem. Commun. 50, 6498–6501 (2014).

    CAS  Google Scholar 

  156. Zhu, Z. H., Lu, G. Q. & Hatori, H. New insights into the interaction of hydrogen atoms with boron-substituted carbon. J. Phys. Chem. B 110, 1249–1255 (2006).

    CAS  Google Scholar 

  157. Wang, L. & Yang, R. T. New sorbents for hydrogen storage by hydrogen spillover — a review. Energy Environ. Sci. 1, 268–279 (2008).

    CAS  Google Scholar 

  158. Gomez, D. A. & Sastre, G. From microscopic insights of H2 adsorption to uptake estimations in MOFs. Phys. Chem. Chem. Phys. 13, 16558–16568 (2011).

    CAS  Google Scholar 

  159. Boddien, A. et al. Efficient dehydrogenation of formic acid using an iron catalyst. Science 333, 1733–1736 (2011).

    CAS  Google Scholar 

  160. Xu, J. G. & Froment, G. F. Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. Aiche J. 35, 88–96 (1989).

    CAS  Google Scholar 

  161. Schueth, F., Palkovits, R., Schloegl, R. & Su, D. S. Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition. Energy Environ. Sci. 5, 6278–6289 (2012).

    CAS  Google Scholar 

  162. Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    CAS  Google Scholar 

  163. Nørskov, J. K. & Bligaard, T. The catalyst genome. Angew. Chem. Int. Ed. 52, 776–777 (2013).

    Google Scholar 

  164. Guo, J. et al. Lithium imide synergy with 3d transition-metal nitrides leading to unprecedented catalytic activities for ammonia decomposition. Angew. Chem. Int. Ed. 54, 2950–2954 (2015).

    CAS  Google Scholar 

  165. Guo, X. G. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014).

    CAS  Google Scholar 

  166. Ingleson, M. F. et al. Magnesium borohydride confined in a metal–organic framework: a preorganized system for facile arene hydroboration. Angew. Chem. Int. Ed. 48, 2012–2016 (2009).

    CAS  Google Scholar 

  167. Hartman, M. R., Rush, J. J., Udovic, T. J., Bowman, R. C. Jr & Hwang, S.-J. Structure and vibrational dynamics of isotopically labeled lithium borohydride using neutron diffraction and spectroscopy. J. Solid State Chem. 180, 1298–1305 (2007).

    CAS  Google Scholar 

  168. Černý, R., Filinchuk, Y., Hagemann, H. & Yvon, K. Magnesium borohydride: synthesis and crystal Structure. Angew. Chem. Int. Ed. 46, 5765–5767 (2007).

    Google Scholar 

  169. Wu, H., Zhou, W., Udovic, T. J., Rush, J. J. & Yildirim, T. Structures and crystal chemistry of Li2BNH6 and Li4BN3H10 . Chem. Mater. 20, 1245–1247 (2008).

    CAS  Google Scholar 

  170. He, T. et al. Lithium amidoborane hydrazinates: synthesis, structure and hydrogen storage properties. J. Mater. Chem. A 3, 10100–10106 (2015).

    CAS  Google Scholar 

  171. Stowe, A. C., Shaw, W. J., Linehan, J. C., Schmid, B. & Autrey, T. In situ solid state 11B MAS-NMR studies of the thermal decomposition of ammonia borane: mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material. Phys. Chem. Chem. Phys. 9, 1831–1836 (2007).

    CAS  Google Scholar 

  172. Bluhm, M. E., Bradley, M. G., Butterick, R., Kusari, U. & Sneddon, L. G. Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. J. Am. Chem. Soc. 128, 7748–7749 (2006).

    CAS  Google Scholar 

  173. Keaton, R. J., Blacquiere, J. M. & Baker, R. T. Base metal catalyzed dehydrogenation of ammonia borane for chemical hydrogen storage. J. Am. Chem. Soc. 129, 1844–1845 (2007).

    CAS  Google Scholar 

  174. Jaska, C. A., Temple, K., Lough, A. J. & Manners, I. Rhodium-catalyzed formation of boron-nitrogen bonds: a mild route to cyclic aminoboranes and borazines. Chem. Commun. 2001, 962–963 (2001).

    Google Scholar 

  175. Stephens, F. H., Baker, R. T., Matus, M. H., Grant, D. J. & Dixon, D. A. Acid initiation of ammonia-borane dehydrogenation for hydrogen Storage. Angew. Chem. Int. Ed. 46, 746–749 (2007).

    CAS  Google Scholar 

  176. Himmelberger, D. W., Yoon, C. W., Bluhm, M. E., Carroll, P. J. & Sneddon, L. G. Base-promoted ammonia borane hydrogen-release. J. Am. Chem. Soc. 131, 14101–14110 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Project of National Science Funds for Distinguished Young Scholars (51225206), the Collaborative Innovation Center of Chemistry for Energy Materials and the Youth Innovation Promotion Association (CAS) of China and Ministry of Economy, Trade and Industry (METI) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Pachfule, P., Wu, H. et al. Hydrogen carriers. Nat Rev Mater 1, 16059 (2016). https://doi.org/10.1038/natrevmats.2016.59

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2016.59

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing