Review Article

Engineering half-Heusler thermoelectric materials using Zintl chemistry

  • Nature Reviews Materials Article number: 16032 (2016)
  • doi:10.1038/natrevmats.2016.32
  • Download Citation
Published online:

Abstract

Half-Heusler compounds based on XNiSn and XCoSb (X = Ti, Zr or Hf) have rapidly become important thermoelectric materials for converting waste heat into electricity. In this Review, we provide an overview on the electronic properties of half-Heusler compounds in an attempt to understand their basic structural chemistry and physical properties, and to guide their further development. Half-Heusler compounds can exhibit semiconducting transport behaviour even though they are described as ‘intermetallic’ compounds. Therefore, it is most useful to consider these systems as rigid-band semiconductors within the framework of Zintl (or valence-precise) compounds. These considerations aid our understanding of their properties, such as the bandgap and low hole mobility because of interstitial Ni defects in XNiSn. Understanding the structural and bonding characteristics, including the presence of defects, will help to develop different strategies to improve and design better half-Heusler thermoelectric materials.

  • Subscribe to Nature Reviews Materials for full access:

    $59

    Subscribe

  • Purchase article full text and PDF:

    $32

    Buy now

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Handbook of Thermoelectrics Ch. 1 1–10 (CRC Press, 1995).

  2. 2.

    Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

  3. 3.

    et al. Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12. Acta Mater. 57, 5135–5139 (2009).

  4. 4.

    , & Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272, 1325–1328 (1996).

  5. 5.

    et al. On the design of high-efficiency thermoelectric clathrates through a systematic cross-substitution of framework elements. Adv. Funct. Mater. 30, 755–763 (2010).

  6. 6.

    et al. Atomic interactions in the p-type clathrate I Ba8Au5.3Ge40.7. Inorg. Chem. 50, 1250–1257 (2011).

  7. 7.

    , , , & Thermoelectric properties of type-VIII clathrate Ba8Ga16Sn30 doped with Cu. J. Alloy. Comp. 537, 303–307 (2012).

  8. 8.

    , & Thermoelectric clathrates of type I. Dalt. Trans. 39, 978–992 (2010).

  9. 9.

    et al. Phonon scattering through a local anisotropic structural disorder in the thermoelectric solid solution Cu2Zn1−xFexGeSe4. J. Am. Chem. Soc. 135, 726–732 (2013).

  10. 10.

    et al. Influence of a nano phase segregation on the thermoelectric properties of the p-type doped stannite compound Cu2+xZn1xGeSe4. J. Am. Chem. Soc. 134, 7147–7154 (2012).

  11. 11.

    et al. Chalcopyrite CuGaTe2: a high-efficiency bulk thermoelectric material. Adv. Mater. 24, 3622–3626 (2012).

  12. 12.

    , , , & Defect-controlled electronic properties in AZn2Sb2 Zintl phases. Angew. Chem. Int. Ed. Engl. 53, 3422–3426 (2014).

  13. 13.

    , & Zintl phases for thermoelectric devices. Dalt. Trans. 21, 2099–2107 (2007).

  14. 14.

    , & Zintl chemistry for designing high efficiency thermoelectric materials. Chem. Mater. 22, 624–634 (2010).

  15. 15.

    et al. Thermoelectric properties of Sr3GaSb3 — a chain-forming Zintl compound. Energy Environ. Sci. 5, 9121–9128 (2012).

  16. 16.

    et al. Nonstoichiometry in the Zintl phase Yb1dZn2Sb2 as a route to thermoelectric optimization. Chem. Mater. 26, 5710–5717 (2014).

  17. 17.

    , & Band engineering of thermoelectic materials. Adv. Mater. 24, 6124–6135 (2012).

  18. 18.

    et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011).

    A nice demonstration of the benefit of a multiple valley Fermi surface and the concept of converging bands for optimizing thermoelectric properties.

  19. 19.

    , , & Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride. Energy Environ. Sci. 4, 3640–3645 (2011).

  20. 20.

    et al. Band convergence in the non-cubic chalcopyrite compounds Cu2MGeSe4. J. Mater. Chem. C 2, 10189–10194 (2014).

  21. 21.

    , , , & Zintl ions, cage compounds, and intermetalloid clusters of group 14 and group 15 elements angewandte. Angew. Chem. Int. Ed. Engl. 50, 3630–3670 (2011).

  22. 22.

    , & Zintl phases: transitions between metallic and ionic bonding. Angew. Chem. Int. Ed. Engl. 12, 694–712 (1973).

  23. 23.

    Intermetallische Verbindungen. Angew. Chem. 52, 1–6 (1939).

  24. 24.

    The Zintl-Klemm concept — a historical survey. Z. Anorg. Allg. Chem. 640, 2639–2648 (2014).

    This work provides a good overview over the Zintl–Klemm bonding concept.

  25. 25.

    Unusual oxidation states. Angew. Chem. 63, 133–142 (1951).

  26. 26.

    , & Phonon engineering through crystal chemistry. J. Mater. Chem. 21, 15843–15852 (2011).

  27. 27.

    et al. Thermoelectric enhancement in BaGa2Sb2 by Zn-doping. Chem. Mater. 27, 1622–1630 (2015).

  28. 28.

    , , , & Thermoelectric properties of Zn-doped Ca3AlSb3. J. Mater. Chem. 22, 9826–9830 (2012).

  29. 29.

    , , , & Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery. Energy Environ. Sci. 4, 510–518 (2011).

  30. 30.

    et al. A large family of filled skutterudites stabilized by electron count. Nat. Commun. 6, 6489 (2015).

  31. 31.

    et al. Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors. J. Am. Chem. Soc. 135, 7486–7495 (2013).

  32. 32.

    et al. Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials 2, 379–412 (2012).

  33. 33.

    , & Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1–50 (2011).

    This review provides a complete overview of challenges and applications of half-Heusler compounds.

  34. 34.

    , & Covalent bonding and the nature of band gaps in some half-Heusler compounds. J. Phys. D Appl. Phys. 39, 776–785 (2006).

    This publication introduces the bonding situation in half-Heusler semiconductors.

  35. 35.

    & Half-Heusler thermoelectrics: a complex class of materials. J. Phys. Condens. Matter 26, 433201 (2014).

  36. 36.

    & Ordered structures and thermoelectric properties of MNiSn (M = Ti, Zr, Hf)-based half-Heusler compounds affected by close relationship with Heusler compounds. JOM 67, 233–245 (2015).

  37. 37.

    , & Nanoengineering thermoelectrics for 21st century: energy harvesting and other trends in the field. Renewable Sustainable Energy Rev. 24, 288–305 (2013).

  38. 38.

    & Recent progress in half-Heusler for moderate temperature thermoelectric applications. Mater. Today 16, 387–295 (2013).

  39. 39.

    , , , & Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Phys. Rev. X 4, 011019 (2014).

  40. 40.

    , , & Nanograined half-Heusler semiconductors as advanced thermoelectrics: an ab initio high-throughput statistical study. Adv. Funct. Mater. 24, 7427–7432 (2014).

  41. 41.

    , , & Electronic structure and thermopower of Ni(Ti0.5Hf0.5)Sn and related half-Heusler phases. Phys. Rev. B 73, 045121 (2006).

  42. 42.

    , & Structure stability of Ni containing half-Heusler compounds. Phys. Rev. B 62, 12754 (2000).

  43. 43.

    & Band gap and stability in the ternary intermetallic compounds NiSnM (M = Ti, Zr, Hf) — a first princible study. Phys. Rev. B 51, 10443 (1995).

  44. 44.

    et al. Evaluation of half-Heulser compounds as thermoelectric materials based on the calculated electrical transport properties. Adv. Funct. Mater. 18, 2880–2888 (2008).

  45. 45.

    et al. Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. Nat. Chem. 7, 308–316 (2015).

  46. 46.

    , & Covalence and ionicity in MgAgAs-type compounds. Chem. Eur. J. 20, 9702–9708 (2014).

  47. 47.

    et al. Interrelation between atomic switching disorder and thermoelectric properties of ZrNiSn half-Heusler compounds. CrystEngComm 14, 4467 (2012).

  48. 48.

    , , & On the origin of a band gap in compounds of diamond-like structures. Inorg. Chem. 46, 1957–1959 (2007).

    This publication introduces the possible view of half-Heusler materials as Zintl phases.

  49. 49.

    & Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    This review illustrates the challenges and possible guidelines in complex thermoelectrics.

  50. 50.

    , & 8−N rule and chemical bonding in main-group MgAgAs-type compounds. Inorg. Chem. 54, 3970–3978 (2015).

  51. 51.

    Chemistry, Structure, and Bonding of Zintl Phases and Ions (Wiley VCH, 1996).

  52. 52.

    & The chemical bond in semiconductors. J. Electron. 1, 629 (1956).

  53. 53.

    The crystal structures of semiconductors and a general valence rule. Acta Cryst. 17, 1–15 (1964).

  54. 54.

    How chemistry and physics meet in the solid state. Angew. Chem. Int. Ed. Engl. 26, 846–878 (1987).

    This seminal review explains band structures from a chemical perspective.

  55. 55.

    et al. Electronic structure and optical, mechanical, and transport properties of the pure, electron-doped, and hole-doped Heusler compound CoTiSb. Phys. Rev. B 86, 045116 (2012).

  56. 56.

    , , , & Thermoelectric properties and n- to p-type conversion of Co-doped ZrNiSn-based half-Heusler alloys. J. Electron. Mater. 4, 1826–1830 (2012).

  57. 57.

    et al. Enhancement in thermoelectric figure-of-merit of an n-type half-Heusler compound by the nanocomposite approach. Adv. Energy Mater. 1, 643–647 (2011).

  58. 58.

    , , & High-temperature thermoelectric properties of Nb-doped MNiSn (M = Ti, Zr) half-Heusler compound. J. Alloys Compd. 469, 50–55 (2009).

  59. 59.

    et al. Electronic structure and optical, mechanical, and transport properties of the pure, electron-doped, and hole-doped Heusler compound CoTiSb. Phys. Rev. B 86, 045116 (2012).

  60. 60.

    The Electronic Structure and Chemistry of Solids Ch. 1 1–60 (Oxford Univ. Press, 1987).

  61. 61.

    et al. (Zr,Hf)Co(Sb,Sn) half-Heusler phases as high temperature (>700 °C) p-type thermoelectric materials. Appl. Phys. Lett. 93, 022105 (2008).

  62. 62.

    et al. Electronic structure of the Ti1−xScxNiSn and Zr1−xScxNiSn solid solutions. J. Alloys Compd. 396, 64–68 (2005).

  63. 63.

    et al. Crystal structure and physical properties of (Ti,Sc)NiSn and (Zr,Sc)NiSn solid solutions. J. Alloys Compd. 363, 10–14 (2004).

  64. 64.

    , , & Resolving the true band gap of ZrNiSn half-Heusler thermoelectric materials. Mater. Horiz. 2, 68–75 (2015).

  65. 65.

    , , & Higher mobility in bulk semiconductors by separating the dopants from the charge-conducting band — a case study of thermoelectric PbSe. Mater. Horiz. 2, 323–329 (2015).

  66. 66.

    Practical doping principles. Appl. Phys. Lett. 83, 57–59 (2003).

    This work is a guideline for understanding defect chemistry and the influences of defects in semiconductors.

  67. 67.

    et al. BaGe5: a new type of intermetallic clathrate. J. Am. Chem. Soc. 132, 10984–10985 (2010).

  68. 68.

    et al. Transport properties of the clathrate BaGe5. J. Appl. Phys. 110, 043715 (2011).

  69. 69.

    et al. Crystal structure and transport properties of Ba8Ge43. Dalt. Trans. 39, 1078–1088 (2010).

  70. 70.

    , , & Metal distributions, efficient n-type doping, and evidence for in-gap states in TiNiMy Sn (M = Co, Ni, Cu) half-Heusler nanocomposites. Chem. Mater. 27, 2449–2459 (2015).

  71. 71.

    et al. In-gap electronic states responsible for the excellent thermoelectric properties of Ni-based half-Heusler alloys. Appl. Phys. Express 1, 081901 (2008).

  72. 72.

    et al. Electronic and local crystal structures of the ZrNiSn half-Heusler thermoelectric material. Mater. Trans. 55, 1209–1214 (2014).

  73. 73.

    , , , & Nanoscale structural heterogeneity in Ni-rich half-Heusler TiNiSn. J. Appl. Phys. 116, 163514 (2014).

  74. 74.

    , , & Compositions and thermoelectric properties of XNiSn (X = Ti, Zr, Hf) half-Heusler alloys. J. Mater. Chem. C 3, 10534–10542 (2015).

  75. 75.

    , , , & High efficiency half-Heusler thermoelectric materials for energy harvesting. Adv. Energy Mater. 5, 1500588 (2015).

  76. 76.

    , , , & Narrow band in the intermetallic compounds MNiSn (M = Ti, Zr, Hf). Z. Phys. B. Condens. Matter 80, 353–357 (1988).

  77. 77.

    , , & Electronic structure of X2ZrSn and XZrSn-type Heusler alloys with X = Co or Ni. Phys. Rev. B 57, 6408–6412 (1998).

  78. 78.

    , , , & Generalized Kohn–Sham schemes and the band-gap problem. Phys. Rev. B 53, 3764–3774 (1996).

  79. 79.

    , & Electronic structure of Zr–Ni–Sn systems: role of clustering and nanostructures in half-Heusler and Heusler limits. J. Phys. Condens. Matter 26, 275501 (2014).

  80. 80.

    et al. Interrelation between atomic switsching disorder and thermoelectric properties of ZrNiSn half-Heusler compounds. Cryst. Eng. Comm. 14, 4467 (2012).

  81. 81.

    et al. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials. Sci. Rep. 4, 6888 (2014).

  82. 82.

    et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-Heusler thermoelectric materials. Adv. Funct. Mater. 23, 5123–5130 (2013).

  83. 83.

    , , , & Direct observation of the electronic structure in thermoelectric half-Heusler alloys Zr1−x Mx NiSn (M = Y and Nb). J. Appl. Phys. 117, 205102 (2015).

  84. 84.

    et al. Conductivity-limiting bipolar thermal conductivity in semiconductors. Sci. Rep. 5, 10136 (2015).

  85. 85.

    , , & Band gap estimation from temperature dependent Seebeck measurement — deviations from the 2e|S|maxTmax relation. Appl. Phys. Lett. 106, 22112 (2015).

  86. 86.

    Materials for thermoelectric energy conversion. Rep. Prog. Phys. 51, 459–539 (1988).

  87. 87.

    , , & Interfacial disconnections at Sb2Te3 precipitates in PbTe: mechanisms of strain accommodation and phase transformation at a tetradymite/rocksalt telluride interface. Acta Mater. 59, 7724–7735 (2011).

  88. 88.

    , , & Applying quantitative microstructure control in advanced functional composites. Adv. Funct. Mater. 24, 2135–2153 (2014).

  89. 89.

    et al. Thermoelectric performance of nanostructured p-type Zr0.5Hf0.5Co0.4Rh0.6Sb1−xSnx half-Heusler alloys. J. Solid State Chem. 202, 70–76 (2013).

  90. 90.

    a et al. Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. J. Am. Chem. Soc. 133, 18843–18852 (2011).

  91. 91.

    et al. Multi-temperature synchrotron PXRD and physical properties study of half-Heusler TiCoSb. Dalt. Trans. 39, 10154–10159 (2010).

  92. 92.

    , , & Characterization and analysis of thermoelectric transport in n-type Ba8Ga16−xGe30+x. Phys. Rev. B 80, 125205 (2009).

  93. 93.

    , & Semiconducting Lead Chalcogenides (Plenum Press, 1970).

  94. 94.

    & Calculated thermoelectric properties of La-filled skutterudites. Phys. Rev. B 56, R1650(R) (1997).

  95. 95.

    et al. Effect of Hf concentration on thermoelectric properties of nanostructured n-type half-Heusler materials HfxZr1−xNiSn0.99Sb0.01. Adv. Energy Mater. 3, 1210–1214 (2013).

  96. 96.

    et al. Improved thermoelectric performance of (Zr0.3Hf0.7)NiSn half-Heusler compounds by Ta substitution. J. Appl. Phys. 115, 183704 (2014).

  97. 97.

    , & High temperature thermoelectric properties of TiNiSn-based half-Heusler compounds. Intermetallics 15, 349–356 (2007).

  98. 98.

    , & High-temperature thermoelectric properties of Tix(ZrHf)0.99−xV0.01Ni0.9Pd0.1Sn0.99Sb0.01 half-Heusler alloys. J. Alloys Compd. 496, 620–623 (2010).

  99. 99.

    & Electronic structure of transition metal-doped XNiSn and XCoSb (X = Hf, Zr) phases in the vicinity of the band gap. J. Phys. Condens. Matter 20, 255220 (2008).

  100. 100.

    , , , & Introduction of resonant states and enhancement of thermoelectric properties in half-Heusler alloys. Phys. Rev. B 83, 235211 (2011).

  101. 101.

    , , , & Transport properties of pure and doped MNiSn (M=Zr, Hf). Phys. Rev. B 59, 8615–8621 (1999).

  102. 102.

    , , , & P-type doping of Hf0.6Zr0.4NiSn half-Heusler thermoelectric materials prepared by levitation melting and spark plasma sintering. J. Mater. Res. 26, 1913–1918 (2011).

  103. 103.

    et al. High-performance half-Heusler thermoelectric materials Hf1−xZrxNiSn1−ySby prepared by levitation melting and spark plasma sintering. Acta Mater. 57, 2757–2764 (2009).

  104. 104.

    et al. Reduced grain size and improved thermoelectric properties of melt spun (Hf,Zr)NiSn half-Heusler alloys. J. Electron. Mater. 39, 2008–2012 (2010).

  105. 105.

    et al. Effects of yttrium doping on the thermoelectric properties of Hf0.6 Zr0.4NiSn0.98Sb0.02 half-Heusler alloys. J. Appl. Phys. 108, 044903 (2010).

  106. 106.

    , , , & Determining conductivity and mobility values of individual components in multiphase composite Cu1.97Ag0.03Se. Appl. Phys. Lett. 105, 172103 (2014).

  107. 107.

    et al. Thermomagnetic properties improved by self-organized flower-like phase separation of ferromagnetic Co2Dy0.5Mn0.5Sn. Adv. Funct. Mater. 22, 1822–1826 (2012).

  108. 108.

    , , & Improvement of thermoelectric properties for half-Heusler TiNiSn by interstitial Ni defects. J. Appl. Phys. 110, 063710 (2011).

  109. 109.

    et al. Peculiarities of structural disorder in Zr- and Hf-containing Heusler and half-Heusler stannides. Intermetallics 35, 45–52 (2013).

  110. 110.

    et al. Improving the thermoelectric properties of half-Heusler TiNiSn through inclusion of a second full-Heusler phase: microwave preparation and spark plasma sintering of TiNi(1+x)Sn. Phys. Chem. Chem. Phys. 15, 6990–6997 (2013).

  111. 111.

    et al. Rapid microwave preparation of thermoelectric TiNiSn and TiCoSb half-Heusler compounds. Chem. Mater. 24, 2558–2565 (2012).

  112. 112.

    & Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation. Phys. Chem. Chem. Phys. 16, 25258–25262 (2014).

  113. 113.

    , & Influence of band structure on the large thermoelectric performance of lanthanum telluride. Phys. Rev. B 79, 153101 (2009).

  114. 114.

    , , , & Charge carrier concentration optimization of thermoelectric p-type Half-Heulser compounds. APL Mater. 2, 041516 (2015).

  115. 115.

    et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun. 6, 8144 (2015).

  116. 116.

    , , , & Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT >1. Energy Environ. Sci. 8, 216–220 (2015).

  117. 117.

    , & Recent developments thermoelectric materials. MRS Bull. 31, 199–205 (2006).

  118. 118.

    et al. Nanostructures boost the thermoelectric performance of PbS. J. Am. Chem. Soc. 133, 3460–3470 (2011).

  119. 119.

    , & New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. Engl. 48, 8616–8639 (2009).

  120. 120.

    et al. Copper ion-phonon liquid thermoelectric materials. Nat. Mater. 11, 422–425 (2012).

  121. 121.

    et al. Thermoelectric transport in Cu7PSe6 with high copper ionic mobility. J. Am. Chem. Soc. 136, 12035–12040 (2014).

  122. 122.

    et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

  123. 123.

    et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 6, 3346–3355 (2013).

  124. 124.

    , & Ca3AlSb3 und Ca5Al2Bi6, zwei neue Zintlphasen mit kettenförmigen Anionen. Z. Naturforsch. 39b, 727–732 (1984).

  125. 125.

    & Ca3AlAs3-ein intermetallisches analogon zu den kettensilicaten. Angew. Chem. 93, 474 (1981).

  126. 126.

    , , & Yb14MnSb11: new high efficiency thermoelectric material for power generation. Chem. Mater. 18, 1873–1877 (2006).

  127. 127.

    et al. Traversing the metal–insulator transition in a Zintl phase: rational enhancement of thermoelectric efficiency in Yb14Mn1−xAlxSb11. Adv. Funct. Mater. 18, 2795–2800 (2008).

  128. 128.

    , , , & High thermoelectric efficiency in lanthanum doped Yb14MnSb11. Appl. Phys. Lett. 93, 062110 (2008).

  129. 129.

    , , , & Zintl phases as thermoelectric materials: tuned transport properties of the compounds Cax Yb1−xZn2Sb2. Adv. Funct. Mater. 15, 1860–1864 (2005).

Download references

Acknowledgements

The authors thank A. Zunger and Y. Yu for helpful discussions. W.G.Z. and G.J.S. acknowledge the EFRC Solid-State Solar-Thermal Energy Conversion Center (S3TEC) award number DE-SC0001299 and funding from the Bosch-BERN program. J.S. and C.F. acknowledge the German BMBF joint project TEG 2020. The band structure and partial density of states calculations for this project were performed under the Materials Project work, supported by the Department of Energy Basic Energy Sciences program under Grant No. EDCBEE, DOE Contract DE-AC02-05CH11231.

Author information

Affiliations

  1. Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.

    • Wolfgang G. Zeier
    • , Umut Aydemir
    •  & G. Jeffrey Snyder
  2. Institut für Anorganische und Analytische Chemie, Johannes Gutenberg – Universität, Staudingerweg 9, 55099 Mainz, Germany.

    • Jennifer Schmitt
  3. Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.

    • Geoffroy Hautier
  4. Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.

    • Zachary M. Gibbs
  5. Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany.

    • Claudia Felser

Authors

  1. Search for Wolfgang G. Zeier in:

  2. Search for Jennifer Schmitt in:

  3. Search for Geoffroy Hautier in:

  4. Search for Umut Aydemir in:

  5. Search for Zachary M. Gibbs in:

  6. Search for Claudia Felser in:

  7. Search for G. Jeffrey Snyder in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to G. Jeffrey Snyder.

Supplementary information