Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Design of anti-icing surfaces: smooth, textured or slippery?

Abstract

Passive anti-icing surfaces, or icephobic surfaces, are an area of great interest because of their significant economic, energy and safety implications in the prevention and easy removal of ice in many facets of society. The complex nature of icephobicity, which requires performance in a broad range of icing scenarios, creates many challenges when designing ice-repellent surfaces. Although superhydrophobic surfaces incorporating micro- or nanoscale roughness have been shown to prevent ice accumulation under certain conditions, the same roughness can be detrimental in other environments. Surfaces that present a smooth liquid interface can eliminate some of the drawbacks of textured superhydrophobic surfaces, but additional study is needed to fully realize their potential. As attention begins to shift towards alternative anti-icing strategies, it is important to consider and to understand the nature of ice repellency in all environments to identify the limitations of current solutions and to design new materials with robust icephobicity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of major advances in the area of liquid repellency.
Figure 2: Ice formation from impinging droplets.
Figure 3: Condensation on superhydrophobic surfaces.
Figure 4: Frost formation on different surfaces.
Figure 5: Ice adhesion values for different material categories.

Similar content being viewed by others

References

  1. Cassie, A. B. D. & Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944).

    Article  CAS  Google Scholar 

  2. Holman, H. P. & Jarrell, T. D. The effects of waterproofing materials and outdoor exposure upon the tensile strength of cotton yarn. Ind. Eng. Chem. 15, 236–240 (1923).

    Article  CAS  Google Scholar 

  3. McBurney, D. Coated fabrics in construction industry. Ind. Eng. Chem. 27, 1400–1403 (1935).

    Article  CAS  Google Scholar 

  4. Young, T. An essay on the cohesion of fluids. Phil. Trans. R. Soc. 95, 65–87 (1805).

    Article  Google Scholar 

  5. Rickard, T. A. & Ralston, O. C. Flotation (Mining and Scientific Press, 1917).

    Google Scholar 

  6. Gibbs, J. W. On the equilibrium of heterogeneous substances. Trans. Connect. Acad. Arts Sci. 3, 343–524 (1878).

    Google Scholar 

  7. Eral, H. B., ’t Mannetje, D. J. C. M. & Oh, J. M. Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym. Sci. 291, 247–260 (2013).

    Article  CAS  Google Scholar 

  8. Krasovitski, B. & Marmur, A. Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plate. Langmuir 21, 3881–3885 (2005).

    Article  CAS  Google Scholar 

  9. Nosonovsky, M. Model for solid–liquid and solid–solid friction of rough surfaces with adhesion hysteresis. J. Chem. Phys. 126, 224701 (2007).

    Article  CAS  Google Scholar 

  10. Tadmor, R. Line energy and the relation between advancing, receding, and young contact angles. Langmuir 20, 7659–7664 (2004).

    Article  CAS  Google Scholar 

  11. Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936).

    Article  CAS  Google Scholar 

  12. Cassie, A. B. D. Contact angles. Discuss. Faraday Soc. 3, 11–16 (1948).

    Article  Google Scholar 

  13. de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer Science & Business Media, 2013).

    Google Scholar 

  14. Carraher, C. E. Jr Introduction to Polymer Chemistry (CRC, 2012).

    Book  Google Scholar 

  15. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

    Article  CAS  Google Scholar 

  16. Onda, T., Shibuichi, S., Satoh, N. & Tsujii, K. Super-water-repellent fractal surfaces. Langmuir 12, 2125–2127 (1996).

    Article  CAS  Google Scholar 

  17. Barthlott, W. & Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997).

    Article  CAS  Google Scholar 

  18. Simpson, J. T., Hunter, S. R. & Aytug, T. Superhydrophobic materials and coatings: a review. Rep. Prog. Phys. 78, 086501 (2015).

    Article  CAS  Google Scholar 

  19. Liu, K. & Jiang, L. Metallic surfaces with special wettability. Nanoscale 3, 825–838 (2011).

    Article  CAS  Google Scholar 

  20. Si, Y. & Guo, Z. Superhydrophobic nanocoatings: from materials to fabrications and to applications. Nanoscale 7, 5922–5946 (2015).

    Article  CAS  Google Scholar 

  21. Quéré, D. Wetting and roughness. Annu. Rev. Mater. Res. 38, 71–99 (2008).

    Article  CAS  Google Scholar 

  22. Quéré, D. Non-sticking drops. Rep. Prog. Phys. 68, 2495–2532 (2005).

    Article  Google Scholar 

  23. Ahuja, A. et al. Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces. Langmuir 24, 9–14 (2008).

    Article  CAS  Google Scholar 

  24. Tuteja, A. et al. Designing superoleophobic surfaces. Science 318, 1618–1622 (2007).

    Article  CAS  Google Scholar 

  25. Liu, T. L. & Kim, C.-J. C. Turning a surface superrepellent even to completely wetting liquids. Science 346, 1096–1100 (2014).

    Article  CAS  Google Scholar 

  26. Wong, T.-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    Article  CAS  Google Scholar 

  27. Lafuma, A. & Quéré, D. Slippery pre-suffused surfaces. Europhys. Lett. 96, 56001 (2011).

    Article  CAS  Google Scholar 

  28. Aizenberg, J., Aizenberg, M., Kang, S. H., Wong, T. S. & Kim, P. Slippery surfaces with high pressure stability, optical transparency, and self-healing characteristics. US patent 9-121-306 (2013).

  29. Aizenberg, J., Aizenberg, M., Kang, S. H., Wong, T. S. & Kim, P. Slippery surfaces with high pressure stability, optical transparency, and self-healing characteristics. US patent 9-121-307 (2013).

  30. Kim, P. et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6, 6569–6577 (2012). This work establishes the potential of liquid-infused surfaces for icephobicity, demonstrating very low ice adhesion in addition to high performance in frosting environments that cause traditional SHSs to fail.

    Article  CAS  Google Scholar 

  31. Anand, S., Paxson, A. T., Dhiman, R., Smith, J. D. & Varanasi, K. K. Enhanced condensation on lubricant-impregnated nanotextured surfaces. ACS Nano 6, 10122–10129 (2012).

    Article  CAS  Google Scholar 

  32. Manabe, K., Nishizawa, S., Kyung, K. & Shiratori, S. Optical phenomena and antifrosting property on biomimetics slippery fluid-infused antireflective films via layer-by-layer comparison with superhydrophobic and antireflective films. ACS Appl. Mater. Interfaces 6, 13985–13993 (2014).

    Article  CAS  Google Scholar 

  33. Ma, W., Higaki, Y., Otsuka, H. & Takahara, A. Perfluoropolyether-infused nano-texture: a versatile approach to omniphobic coatings with low hysteresis and high transparency. Chem. Commun. 49, 597–599 (2013).

    Article  CAS  Google Scholar 

  34. Sunny, S., Vogel, N., Howell, C., Vu, T. L. & Aizenberg, J. Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition. Adv. Funct. Mater. 24, 6658–6667 (2014).

    Article  CAS  Google Scholar 

  35. Huang, X., Chrisman, J. D. & Zacharia, N. S. Omniphobic slippery coatings based on lubricant-infused porous polyelectrolyte multilayers. ACS Macro Lett. 2, 826–829 (2013).

    Article  CAS  Google Scholar 

  36. Liu, Q. et al. Durability of a lubricant-infused electrospray silicon rubber surface as an anti-icing coating. Appl. Surf. Sci. 346, 68–76 (2015).

    Article  CAS  Google Scholar 

  37. Vogel, N., Belisle, R. A., Hatton, B., Wong, T.-S. & Aizenberg, J. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nat. Commun. 4, 2176 (2013).

    Article  CAS  Google Scholar 

  38. Bhushan, B. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity. Beilstein J. Nanotechnol. 2, 66–84 (2011).

    Article  CAS  Google Scholar 

  39. Liu, K. & Jiang, L. Bio-inspired self-cleaning surfaces. Annu. Rev. Mater. Res. 42, 231–263 (2012).

    Article  CAS  Google Scholar 

  40. Lv, J., Song, Y., Jiang, L. & Wang, J. Bio-inspired strategies for anti-icing. ACS Nano 8, 3152–3169 (2014).

    Article  CAS  Google Scholar 

  41. Zhang, P. & Lv, F. Y. A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications. Energy 82, 1068–1087 (2015).

    Article  Google Scholar 

  42. Attinger, D. et al. Surface engineering for phase change heat transfer: a review. MRS Energy Sustain. 1, E4 (2014).

    Article  Google Scholar 

  43. Carriveau, R., Edrisy, A. & Cadieux, P. Ice adhesion issues in renewable energy infrastructure. J. Adhes. Sci. Technol. 26, 37–41 (2012).

    Google Scholar 

  44. Laforte, J. L., Allaire, M. A. & Laflamme, J. State-of-the-art on power line de-icing. Atmos. Res. 46, 143–158 (1998).

    Article  Google Scholar 

  45. Ryerson, C. C. Assessment of superstructure ice protection as applied to offshore oil operations safety: problems, hazards, needs, and potential transfer technologies Report No. ERDC/CRREL TR-08-14 (US Army Corps of Engineers, 2008).

  46. Laakso, T. et al. State-of-the-art of wind energy in cold climates Report No. VTT-WORK-152 (VTT Technical Research Centre of Finland, 2010).

  47. Cucchiella, F. & Dadamo, I. Estimation of the energetic and environmental impacts of a roof-mounted building-integrated photovoltaic systems. Renew. Sustain. Energy Rev. 16, 5245–5259 (2012).

    Article  Google Scholar 

  48. Jelle, B. P. The challenge of removing snow downfall on photovoltaic solar cell roofs in order to maximize solar energy efficiency — research opportunities for the future. Energy Build. 67, 334–351 (2013).

    Article  Google Scholar 

  49. Gent, R. W., Dart, N. P. & Cansdale, J. T. Aircraft icing. Phil. Trans. R. Soc. A 358, 2873–2911 (2000).

    Article  Google Scholar 

  50. Environmental Protection Agency. Effluent limitation guidelines and new source performance standards for the airport deicing category (EPA, 2012).

  51. U.S. Department of Energy. Energy savings potential and R&D opportunities for commercial refrigeration final report (Navigant Consulting, 2009).

  52. Machielsen, C. H. M. & Kerschbaumer, H. G. Influence of frost formation and defrosting on the performance of air coolers: standards and dimensionless coefficients for the system designer. Int. J. Refrig. 12, 283–290 (1989).

    Article  Google Scholar 

  53. Leary, W. M. We freeze to please: a history of NASA's icing research tunnel and the quest for flight safety Report No. NASA SP-2002-4226 (NASA, 2002).

  54. Schutzius, T. M. et al. Physics of icing and rational design of surfaces with extraordinary icephobicity. Langmuir 31, 4807–4821 (2015).

    Article  CAS  Google Scholar 

  55. Richard, D., Clanet, C. & Quéré, D. Contact time of a bouncing drop. Nature 417, 811 (2002).

    Article  CAS  Google Scholar 

  56. Richard, D. & Quéré, D. Bouncing water drops. Europhys. Lett. 50, 769–775 (2000).

    Article  CAS  Google Scholar 

  57. Cao, L., Jones, A. K., Sikka, V. K., Wu, J. & Gao, D. Anti-icing superhydrophobic coatings. Langmuir 25, 12444–12448 (2009).

    Article  CAS  Google Scholar 

  58. Tourkine, P., Le Merrer, M. & Quéré, D. Delayed freezing on water repellent materials. Langmuir 25, 7214–7216 (2009).

    Article  CAS  Google Scholar 

  59. Mishchenko, L. et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4, 7699–7707 (2010). This study features an experimental analysis and proposed mechanism for the dynamic icephobicity of SHSs, which can rapidly shed incoming droplets before they freeze even at temperatures as low as −25 to −30 °C.

    Article  CAS  Google Scholar 

  60. Wang, Y., Xue, J., Wang, Q., Chen, Q. & Ding, J. Verification of icephobic/anti-icing properties of a superhydrophobic surface. ACS Appl. Mater. Interfaces 5, 3370–3381 (2013).

    Article  CAS  Google Scholar 

  61. Ruan, M. et al. Preparation and anti-icing behavior of superhydrophobic surfaces on aluminum alloy substrates. Langmuir 29, 8482–8491 (2013).

    Article  CAS  Google Scholar 

  62. Alizadeh, A. et al. Dynamics of ice nucleation on water repellent surfaces. Langmuir 28, 3180–3186 (2012).

    Article  CAS  Google Scholar 

  63. Bahadur, V. et al. Predictive model for ice formation on superhydrophobic surfaces. Langmuir 27, 14143–14150 (2011).

    Article  CAS  Google Scholar 

  64. Bahadur, V. & Garimella, S. V. Preventing the Cassie–Wenzel transition using surfaces with non-communicating roughness elements. Langmuir 25, 4815–4820 (2009).

    Article  CAS  Google Scholar 

  65. Bartolo, D. et al. Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces. Europhys. Lett. 74, 299–305 (2006).

    Article  CAS  Google Scholar 

  66. Reyssat, M., Yeomans, J. M. & Quéré, D. Impalement of fakir drops. Europhys. Lett. 81, 26006 (2008).

    Article  CAS  Google Scholar 

  67. Deng, T. et al. Nonwetting of impinging droplets on textured surfaces. Appl. Phys. Lett. 94, 18–20 (2009).

    Google Scholar 

  68. Extrand, C. W. Designing for optimum liquid repellency. Langmuir 22, 1711–1714 (2006).

    Article  CAS  Google Scholar 

  69. Liu, B. & Lange, F. F. Pressure induced transition between superhydrophobic states: configuration diagrams and effect of surface feature size. J. Colloid Interface Sci. 298, 899–909 (2006).

    Article  CAS  Google Scholar 

  70. Ishino, C., Okumura, K. & Quéré, D. Wetting transitions on rough surfaces. Europhys. Lett. 68, 419–425 (2007).

    Article  CAS  Google Scholar 

  71. Boreyko, J. B., Baker, C. H., Poley, C. R. & Chen, C.-H. Wetting and dewetting transitions on hierarchical superhydrophobic surfaces. Langmuir 27, 7502–7509 (2011).

    Article  CAS  Google Scholar 

  72. Sarshar, M. A., Swarctz, C., Hunter, S., Simpson, J. & Choi, C. H. Effects of contact angle hysteresis on ice adhesion and growth on superhydrophobic surfaces under dynamic flow conditions. Colloid Polym. Sci. 291, 427–435 (2013).

    Article  CAS  Google Scholar 

  73. Bird, J. C., Dhiman, R., Kwon, H. M. & Varanasi, K. K. Reducing the contact time of a bouncing drop. Nature 503, 385–388 (2013).

    Article  CAS  Google Scholar 

  74. Maitra, T. et al. Supercooled water drops impacting superhydrophobic textures. Langmuir 30, 10855–10861 (2014).

    Article  CAS  Google Scholar 

  75. Heydari, G., Thormann, E., Ja, M., Tyrode, E. & Claesson, P. M. Hydrophobic surfaces: topography effects on wetting by supercooled water and freezing delay. J. Phys. Chem. C 117, 21752–21762 (2013).

    Article  CAS  Google Scholar 

  76. Sun, X., Damle, V. G., Liu, S. & Rykaczewski, K. Bioinspired stimuli-responsive and antifreeze-secreting anti-icing coatings. Adv. Mater. Interfaces 2, 1400479 (2015).

    Article  CAS  Google Scholar 

  77. He, M., Li, H., Wang, J. & Song, Y. Superhydrophobic surface at low surface temperature. Appl. Phys. Lett. 98, 2009–2012 (2011).

    Google Scholar 

  78. Yin, L. et al. In situ investigation of ice formation on surfaces with representative wettability. Appl. Surf. Sci. 256, 6764–6769 (2010).

    Article  CAS  Google Scholar 

  79. Jung, S. et al. Are superhydrophobic surfaces best for icephobicity? Langmuir 27, 3059–3066 (2011).

    Article  CAS  Google Scholar 

  80. Eberle, P., Tiwari, M. K., Maitra, T. & Poulikakos, D. Rational nanostructuring of surfaces for extraordinary icephobicity. Nanoscale 6, 4874–4881 (2014).

    Article  CAS  Google Scholar 

  81. Fletcher, N. H. Size effect in heterogeneous nucleation. J. Chem. Phys. 29, 572–576 (1958).

    Article  CAS  Google Scholar 

  82. Li, K. et al. Investigating the effects of solid surfaces on ice nucleation. Langmuir 28, 10749–10754 (2012).

    Article  CAS  Google Scholar 

  83. Li, K. et al. Viscosity of interfacial water regulates ice nucleation. Appl. Phys. Lett. 104, 10–14 (2014).

    Google Scholar 

  84. Jung, S., Tiwari, M. K., Doan, N. V. & Poulikakos, D. Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 3, 615 (2012). This study examines the mechanism of ice nucleation and growth in supercooled droplets deposited on various surfaces, particularly highlighting the effect of environmental factors such as humidity and airflow.

    Article  CAS  Google Scholar 

  85. Kalikmanov, V. I. Nucleation Theory Vol. 860 (Springer, 2013).

    Book  Google Scholar 

  86. Lum, K., Chandler, D. & Weeks, J. D. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 (1999).

    Article  CAS  Google Scholar 

  87. Ewart, K. V., Lin, Q. & Hew, C. L. Structure, function and evolution of antifreeze proteins. Cell. Mol. Life Sci. 55, 271–283 (1999).

    Article  CAS  Google Scholar 

  88. Clark, M. S. & Worland, M. R. How insects survive the cold: molecular mechanisms—a review. J. Comp. Physiol. B 178, 917–933 (2008).

    Article  CAS  Google Scholar 

  89. Atıcı, Ö. & Nalbantoğlu, B. Antifreeze proteins in higher plants. Phytochemistry 64, 1187–1196 (2003).

    Article  CAS  Google Scholar 

  90. Gwak, Y. et al. Creating anti-icing surfaces via the direct immobilization of antifreeze proteins on aluminum. Sci. Rep. 5, 12019 (2015).

    Article  Google Scholar 

  91. Charpentier, T. V., Neville, A., Millner, P., Hewson, R. & Morina, A. An investigation of freezing of supercooled water on anti-freeze protein modified surfaces. J. Bion. Eng. 10, 139–147 (2013).

    Article  Google Scholar 

  92. Esser-Kahn, A. P., Trang, V. & Francis, M. B. Incorporation of antifreeze proteins into polymer coatings using site-selective bioconjugation. J. Am. Chem. Soc. 132, 13264–13269 (2010). Using antifreeze proteins found in Arctic fish and insects, a polymer–protein conjugate is demonstrated that can inhibit frost formation when applied as a thin film on glass substrates.

    Article  CAS  Google Scholar 

  93. Hao, Q. et al. Mechanism of delayed frost growth on superhydrophobic surfaces with jumping condensates: more than interdrop freezing. Langmuir 30, 15416–15422 (2014).

    Article  CAS  Google Scholar 

  94. Smith, J. D. et al. Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9, 1772–1780 (2013).

    Article  CAS  Google Scholar 

  95. Lee, C., Kim, H. & Nam, Y. Drop impact dynamics on oil-infused nanostructured surfaces. Langmuir 30, 8400–8407 (2014).

    Article  CAS  Google Scholar 

  96. Narhe, R. D. & Beysens, D. A. Growth dynamics of water drops on a square-pattern rough hydrophobic surface. Langmuir 23, 6486–6489 (2007).

    Article  CAS  Google Scholar 

  97. Narhe, R. D. & Beysens, D. A. Nucleation and growth on a superhydrophobic grooved surface. Phys. Rev. Lett. 93, 076103 (2004).

    Article  CAS  Google Scholar 

  98. Wier, K. A. & McCarthy, T. J. Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: ultrahydrophobic surfaces are not always water repellant. Langmuir 22, 2433–2436 (2006).

    Article  CAS  Google Scholar 

  99. Narhe, R. D. & Beysens, D. A. Water condensation on a super-hydrophobic spike surface. Europhys. Lett. 75, 98–104 (2007).

    Article  CAS  Google Scholar 

  100. Varanasi, K. K., Hsu, M., Bhate, N., Yang, W. & Deng, T. Spatial control in the heterogeneous nucleation of water. Appl. Phys. Lett. 95, 094101 (2009).

    Article  CAS  Google Scholar 

  101. Varanasi, K. K., Deng, T., Smith, J. D., Hsu, M. & Bhate, N. Frost formation and ice adhesion on superhydrophobic surfaces. Appl. Phys. Lett. 97, 234102 (2010). This paper demonstrates the vulnerability of microstructured SHSs to frost formation and reveals the corresponding increase in ice adhesion that can occur when water is frozen in the Wenzel state.

    Article  CAS  Google Scholar 

  102. Cheng, Y. T. & Rodak, D. E. Is the lotus leaf superhydrophobic? Appl. Phys. Lett. 86, 1–3 (2005).

    Google Scholar 

  103. Mockenhaupt, B., Ensikat, H. J., Spaeth, M. & Barthlott, W. Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure. Langmuir 24, 13591–13597 (2008).

    Article  CAS  Google Scholar 

  104. Lafuma, A. & Quéré, D. Superhydrophobic states. Nat. Mater. 2, 457–460 (2003).

    Article  CAS  Google Scholar 

  105. Zhang, Q. et al. Condensation mode determines the freezing of condensed water on solid surfaces. Soft Matter 8, 8285–8288 (2012).

    Article  CAS  Google Scholar 

  106. Guo, P. et al. Icephobic/anti-icing properties of micro/nanostructured surfaces. Adv. Mater. 24, 2642–2648 (2012).

    Article  CAS  Google Scholar 

  107. Zhang, Y., Yu, X., Wu, H. & Wu, J. Facile fabrication of superhydrophobic nanostructures on aluminum foils with controlled-condensation and delayed-icing effects. Appl. Surf. Sci. 258, 8253–8257 (2012).

    Article  CAS  Google Scholar 

  108. Wen, M., Wang, L., Zhang, M., Jiang, L. & Zheng, Y. Antifogging and icing-delay properties of composite micro- and nanostructured surfaces. ACS Appl. Mater. Interfaces 6, 3963–3968 (2014).

    Article  CAS  Google Scholar 

  109. Beysens, D. Dew nucleation and growth. Comptes Rendus Phys. 7, 1082–1100 (2006).

    Article  CAS  Google Scholar 

  110. Chen, C. H. et al. Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Appl. Phys. Lett. 90, 23–25 (2007).

    Google Scholar 

  111. Boreyko, J. B. & Chen, C.-H. Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103, 184501 (2009).

    Article  CAS  Google Scholar 

  112. Liu, T. Q., Sun, W., Sun, X. Y. & Ai, H. R. Mechanism study of condensed drops jumping on super-hydrophobic surfaces. Colloids Surf. A 414, 366–374 (2012).

    Article  CAS  Google Scholar 

  113. He, M. et al. Hierarchically structured porous aluminum surfaces for high-efficient removal of condensed water. Soft Matter 8, 6680–6683 (2012).

    Article  CAS  Google Scholar 

  114. Chen, X. et al. Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv. Funct. Mater. 21, 4617–4623 (2011).

    Article  CAS  Google Scholar 

  115. Rykaczewski, K. et al. How nanorough is rough enough to make a surface superhydrophobic during water condensation? Soft Matter 8, 8786–8794 (2012).

    Article  CAS  Google Scholar 

  116. Feng, J., Qin, Z. & Yao, S. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces. Langmuir 28, 6067–6075 (2012).

    Article  CAS  Google Scholar 

  117. Miljkovic, N. et al. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 13, 179–187 (2013).

    Article  CAS  Google Scholar 

  118. Boreyko, J. B. & Collier, C. P. Delayed frost growth on jumping-drop superhydrophobic surfaces. ACS Nano 7, 1618–1627 (2013).

    Article  CAS  Google Scholar 

  119. Zhang, Q. et al. Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets. Chem. Commun. 49, 4516–4518 (2013).

    Article  CAS  Google Scholar 

  120. Chen, X. et al. Activating the microscale edge effect in a hierarchical surface for frosting suppression and defrosting promotion. Sci. Rep. 3, 2515 (2013).

    Article  Google Scholar 

  121. Boreyko, J. B. et al. Dynamic defrosting on nanostructured superhydrophobic surfaces. Langmuir 29, 9516–9524 (2013).

    Article  CAS  Google Scholar 

  122. Wilson, P. W. et al. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Phys. Chem. Chem. Phys. 15, 581–585 (2013).

    Article  CAS  Google Scholar 

  123. Wexler, J. S., Jacobi, I. & Stone, H. A. Shear-driven failure of liquid-infused surfaces. Phys. Rev. Lett. 114, 168301 (2015).

    Article  CAS  Google Scholar 

  124. Howell, C. et al. Stability of surface-immobilized lubricant interfaces under flow. Chem. Mater. 27, 1792–1800 (2015).

    Article  CAS  Google Scholar 

  125. Daniel, D., Mankin, M. N., Belisle, R. A., Wong, T. S. & Aizenberg, J. Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures. Appl. Phys. Lett. 102, 231603 (2013).

    Article  CAS  Google Scholar 

  126. Wexler, J. S. et al. Robust liquid-infused surfaces through patterned wettability. Soft Matter 11, 5023–5029 (2015).

    Article  CAS  Google Scholar 

  127. Kim, P., Kreder, M. J., Alvarenga, J. & Aizenberg, J. Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates. Nano Lett. 13, 1793–1799 (2013).

    Article  CAS  Google Scholar 

  128. Rykaczewski, K., Anand, S., Subramanyam, S. B. & Varanasi, K. K. Mechanism of frost formation on lubricant-impregnated surfaces. Langmuir 29, 5230–5238 (2013).

    Article  CAS  Google Scholar 

  129. Rykaczewski, K., Landin, T., Walker, M. L., Scott, J. H. J. & Varanasi, K. K. Direct imaging of complex nano- to microscale interfaces involving solid, liquid, and gas phases. ACS Nano 6, 9326–9334 (2012).

    Article  CAS  Google Scholar 

  130. Verho, T. et al. Mechanically durable superhydrophobic surfaces. Adv. Mater. 23, 673–678 (2011).

    Article  CAS  Google Scholar 

  131. Xiao, R., Miljkovic, N., Enright, R. & Wang, E. N. Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer. Sci. Rep. 3, 1988 (2013).

    Article  Google Scholar 

  132. Zhu, L. et al. Ice-phobic coatings based on silicon-oil-infused polydimethylsiloxane. ACS Appl. Mater. Interfaces 5, 4053–4062 (2013).

    Article  CAS  Google Scholar 

  133. Yao, X. et al. Fluorogel elastomers with tunable transparency, elasticity, shape-memory, and antifouling properties. Angew. Chem. Int. Ed. Engl. 53, 4418–4422 (2014).

    Article  CAS  Google Scholar 

  134. MacCallum, N. et al. Liquid-infused silicone as biofouling-free medical material. ACS Biomater. Sci. Eng. 1, 43–51 (2015).

    Article  CAS  Google Scholar 

  135. Cui, J., Daniel, D., Grinthal, A., Lin, K. & Aizenberg, J. Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing. Nat. Mater. 14, 790–795 (2015).

    Article  CAS  Google Scholar 

  136. Urata, C., Dunderdale, G. J., England, M. W. & Hozumi, A. Self-lubricating organogels (SLUGs) with exceptional syneresis-induced anti-sticking properties against viscous emulsions and ices. J. Mater. Chem. A 3, 12626–12630 (2015).

    Article  CAS  Google Scholar 

  137. Wang, Y. et al. Organogel as durable anti-icing coatings. Sci. China Mater. 58, 559–565 (2015).

    Article  CAS  Google Scholar 

  138. Wilen, L. A., Wettlaufer, J. S., Elbaum, M. & Schick, M. Dispersion-force effects in interfacial premelting of ice. Phys. Rev. B 52, 12426–12433 (1995).

    Article  CAS  Google Scholar 

  139. Ryzhkin, I. A. & Petrenko, V. F. Physical mechanisms responsible for ice adhesion. J. Phys. Chem. 5647, 6267–6270 (1997).

    Article  Google Scholar 

  140. Hays, D. A. in Fundamentals of Adhesion (ed. Lee, L.-H. ) 249–278 (Springer, 1991).

    Book  Google Scholar 

  141. Petrenko, V. F. & Peng, S. Reduction of ice adhesion to metal by using self-assembling monolayers (SAMs). Can. J. Phys. 81, 387–393 (2003).

    Article  CAS  Google Scholar 

  142. Jellinek, H. H. G., Kachi, H., Kittaka, S., Lee, M. & Yokota, R. Ice releasing block-copolymer coatings. Colloid Polym. Sci. 256, 544–551 (1978).

    Article  CAS  Google Scholar 

  143. Laforte, C. & Beisswenger, A. Icephobic material centrifuge adhesion test in IWAIS XI (Anti-icing Materials International Laboratory, 2005).

    Google Scholar 

  144. Makkonen, L. Ice adhesion — theory, measurements and countermeasures. J. Adhes. Sci. Technol. 26, 413–445 (2012).

    CAS  Google Scholar 

  145. Chen, J., Luo, Z., Fan, Q., Lv, J. & Wang, J. Anti-ice coating inspired by ice skating. Small 10, 4693–4699 (2014).

    Article  CAS  Google Scholar 

  146. Chernyy, S. et al. Superhydrophilic polyelectrolyte brush layers with imparted anti-icing properties: effect of counter ions. ACS Appl. Mater. Interfaces 6, 6487–6496 (2014).

    Article  CAS  Google Scholar 

  147. Farhadi, S., Farzaneh, M. & Kulinich, S. A. Anti-icing performance of superhydrophobic surfaces. Appl. Surf. Sci. 257, 6264–6269 (2011).

    Article  CAS  Google Scholar 

  148. Fu, Q. et al. Development of sol–gel icephobic coatings: effect of surface roughness and surface energy. ACS Appl. Mater. Interfaces 6, 20685–20692 (2014).

    Article  CAS  Google Scholar 

  149. Ge, L. et al. Anti-icing property of superhydrophobic octadecyltrichlorosilane film and its ice adhesion strength. J. Nanomater. 2013, 1–5 (2013).

    Article  CAS  Google Scholar 

  150. Kulinich, S. A. & Farzaneh, M. How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir 25, 8854–8856 (2009).

    Article  CAS  Google Scholar 

  151. Meuler, A. J. et al. Relationships between water wettability and ice adhesion. ACS Appl. Mater. Interfaces 2, 3100–3110 (2010). This comprehensive study establishes a link between the practical work of adhesion for liquid water and the ice adhesion on smooth surfaces with a broad range of chemistries.

    Article  CAS  Google Scholar 

  152. Momen, G., Jafari, R. & Farzaneh, M. Ice repellency behaviour of superhydrophobic surfaces: effects of atmospheric icing conditions and surface roughness. Appl. Surf. Sci. 349, 211–218 (2015).

    Article  CAS  Google Scholar 

  153. Sojoudi, H., McKinley, G. H. & Gleason, K. K. Linker-free grafting of fluorinated polymeric cross-linked network bilayers for durable reduction of ice adhesion. Mater. Horiz. 2, 91–99 (2015).

    Article  CAS  Google Scholar 

  154. Subramanyam, S. B., Rykaczewski, K. & Varanasi, K. K. Ice adhesion on lubricant-impregnated textured surfaces. Langmuir 29, 13414–13418 (2013).

    Article  CAS  Google Scholar 

  155. Susoff, M., Siegmann, K., Pfaffenroth, C. & Hirayama, M. Evaluation of icephobic coatings — screening of different coatings and influence of roughness. Appl. Surf. Sci. 282, 870–879 (2013).

    Article  CAS  Google Scholar 

  156. Wang, C., Fuller, T., Zhang, W. & Wynne, K. J. Thickness dependence of ice removal stress for a polydimethylsiloxane nanocomposite: Sylgard 184. Langmuir 30, 12819–12826 (2014).

    Article  CAS  Google Scholar 

  157. Yin, X. et al. Integration of self-lubrication and near-infrared photothermogenesis for excellent anti-icing/deicing performance. Adv. Funct. Mater. 25, 4237–4245 (2015).

    Article  CAS  Google Scholar 

  158. Zou, M. et al. Effects of surface roughness and energy on ice adhesion strength. Appl. Surf. Sci. 257, 3786–3792 (2011).

    Article  CAS  Google Scholar 

  159. Dou, R. et al. Anti-icing coating with an aqueous lubricating layer. ACS Appl. Mater. Interfaces 6, 6998–7003 (2014).

    Article  CAS  Google Scholar 

  160. Kulinich, S. A., Farhadi, S., Nose, K. & Du, X. W. Superhydrophobic surfaces: are they really ice-repellent? Langmuir 27, 25–29 (2011).

    Article  CAS  Google Scholar 

  161. Chen, J. et al. Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate. ACS Appl. Mater. Interfaces 5, 4026–4030 (2013).

    Article  CAS  Google Scholar 

  162. Beisswenger, A., Guy, F. & Laforte, C. Advances in ice adherence and accumulation reduction testing at the anti-icing materials international laboratory (AMIL) (Anti-icing Materials International Laboratory, 2010).

    Google Scholar 

  163. Saito, H., Takai, K. & Yamauchi, G. Water- and ice-repellent coatings. Surf. Coatings Int. 80, 168–171 (1997).

    Article  CAS  Google Scholar 

  164. Nishino, T., Meguro, M., Nakamae, K., Matsushita, M. & Ueda, Y. The lowest surface free energy based on –CF3 alignment. Langmuir 15, 4321–4323 (1999).

    Article  CAS  Google Scholar 

  165. Kulinich, S. A. & Farzaneh, M. Ice adhesion on super-hydrophobic surfaces. Appl. Surf. Sci. 255, 8153–8157 (2009).

    Article  CAS  Google Scholar 

  166. Davis, A., Yeong, Y. H., Steele, A., Bayer, I. S. & Loth, E. Superhydrophobic nanocomposite surface topography and ice adhesion. ACS Appl. Mater. Interfaces 6, 9272–9279 (2014).

    Article  CAS  Google Scholar 

  167. Hejazi, V., Sobolev, K. & Nosonovsky, M. From superhydrophobicity to icephobicity: forces and interaction analysis. Sci. Rep. 3, 2194 (2013).

    Article  Google Scholar 

  168. Chen, J. et al. Superhydrophobic surfaces cannot reduce ice adhesion. Appl. Phys. Lett. 101, 111603 (2012).

    Article  CAS  Google Scholar 

  169. Boinovich, L. & Emelyanenko, A. M. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface. Langmuir 30, 12596–12601 (2014).

    Article  CAS  Google Scholar 

  170. Yang, S. et al. Research on the icephobic properties of fluoropolymer-based materials. Appl. Surf. Sci. 257, 4956–4962 (2011).

    Article  CAS  Google Scholar 

  171. Jellinek, H. H. G. Liquid-like (transition) layer on ice. J. Colloid Interface Sci. 25, 192–205 (1967).

    Article  CAS  Google Scholar 

  172. Ryzhkin, I. & Petrenko, V. Violation of ice rules near the surface: a theory for the quasiliquid layer. Phys. Rev. B 65, 012205 (2001).

    Article  CAS  Google Scholar 

  173. Rosenberg, R. Why is ice slippery? Phys. Today 58, 50–55 (2005).

    Article  CAS  Google Scholar 

  174. Fletcher, N. H. Surface structure of water and ice. Philos. Mag. 7, 255–269 (1962).

    Article  CAS  Google Scholar 

  175. Fletcher, N. H. Surface structure of water and ice: II. A revised model. Philos. Mag. 18, 1287–1300 (1968).

    Article  CAS  Google Scholar 

  176. Jin, H., Tian, X., Ikkala, O. & Ras, R. H. A. Preservation of superhydrophobic and superoleophobic properties upon wear damage. ACS Appl. Mater. Interfaces 5, 485–488 (2013).

    Article  CAS  Google Scholar 

  177. Tesler, A. B. et al. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel. Nat. Commun. 6, 8649 (2015).

    Article  CAS  Google Scholar 

  178. Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Grinthal and K.-C. Park for their comments on the manuscript. M.J.K. thanks Natural Sciences and Engineering Research Council (NSERC) for a Postgraduate Scholarships-Doctoral (PGS D) scholarship. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), US Department of Energy, under Award Number DE-AR0000326.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Aizenberg.

Ethics declarations

Competing interests

J.A. and P.K. are founders of SLIPS Technologies.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreder, M., Alvarenga, J., Kim, P. et al. Design of anti-icing surfaces: smooth, textured or slippery?. Nat Rev Mater 1, 15003 (2016). https://doi.org/10.1038/natrevmats.2015.3

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2015.3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing