Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical, thermal and mechanical stabilities of metal–organic frameworks

Abstract

The construction of thousands of well-defined, porous, metal–organic framework (MOF) structures, spanning a broad range of topologies and an even broader range of pore sizes and chemical functionalities, has fuelled the exploration of many applications. Accompanying this applied focus has been a recognition of the need to engender MOFs with mechanical, thermal and/or chemical stability. Chemical stability in acidic, basic and neutral aqueous solutions is important. Advances over recent years have made it possible to design MOFs that possess different combinations of mechanical, thermal and chemical stability. Here, we review these advances and the associated design principles and synthesis strategies. We focus on how these advances may render MOFs effective as heterogeneous catalysts, both in chemically harsh condensed phases and in thermally challenging conditions relevant to gas-phase reactions. Finally, we briefly discuss future directions of study for the production of highly stable MOFs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The chemical (acid–base) stability of some representative metal–organic frameworks based on literature data.
Figure 2: Selected sections of representative metal–organic framework materials.
Figure 3: Connectivity of Zr6 nodes in zirconium-based metal–organic frameworks and the associated carboxylate molecules required to link nodes together.
Figure 4: Catalytic oxidation of water using Ir-containing derivatives of UiO-67.
Figure 5: Catalytic hydrolysis of the nerve agent soman (known as GD) by NU-1000.
Figure 6: Oxidative dehydrogenation of cyclohexene to benzene using V-UiO-66 as a catalyst.

Similar content being viewed by others

References

  1. Abrahams, B. F., Hoskins, B. F., Michail, D. M. & Robson, R. Assembly of porphyrin building blocks into network structures with large channels. Nature 369, 727–729 (1994).

    Article  CAS  Google Scholar 

  2. Zhou, H.-C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

    Article  CAS  Google Scholar 

  3. Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  CAS  Google Scholar 

  4. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).

    Article  CAS  Google Scholar 

  5. Eddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K. & Guillerm, V. Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties. Chem. Soc. Rev. 44, 228–249 (2015).

    Article  CAS  Google Scholar 

  6. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. Engl. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  7. Ferey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Article  CAS  Google Scholar 

  8. Foo, M. L., Matsuda, R. & Kitagawa, S. Functional hybrid porous coordination polymers. Chem. Mater. 26, 310–322 (2014).

    Article  CAS  Google Scholar 

  9. Farha, O. K. & Hupp, J. T. Rational design, synthesis, purification, and activation of metal–organic framework materials. Acc. Chem. Res. 43, 1166–1175 (2010).

    Article  CAS  Google Scholar 

  10. O'Keeffe, M. & Yaghi, O. M. Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem. Rev. 112, 675–702 (2012).

    Article  CAS  Google Scholar 

  11. Farha, O. K. et al. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012).

    Article  CAS  Google Scholar 

  12. Grunker, R. et al. A new metal–organic framework with ultra-high surface area. Chem. Commun. 50, 3450–3452 (2014).

    Article  CAS  Google Scholar 

  13. Furukawa, H. et al. Ultrahigh porosity in metal–organic frameworks. Science 329, 424–428 (2010).

    Article  CAS  Google Scholar 

  14. Furukawa, H. et al. Isoreticular expansion of metal–organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. Inorg. Chem. 50, 9147–9152 (2011).

    Article  CAS  Google Scholar 

  15. Li, J.-R., Kuppler, R. J. & Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    Article  CAS  Google Scholar 

  16. Mason, J. A., Veenstra, M. & Long, J. R. Evaluating metal–organic frameworks for natural gas storage. Chem. Sci. 5, 32–51 (2014).

    Article  CAS  Google Scholar 

  17. Peng, Y. et al. Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J. Am. Chem. Soc. 135, 11887–11894 (2013).

    Article  CAS  Google Scholar 

  18. Li, J.-R., Sculley, J. & Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

    Article  CAS  Google Scholar 

  19. Horcajada, P. et al. Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. Engl. 45, 5974–5978 (2006).

    Article  CAS  Google Scholar 

  20. Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    Article  CAS  Google Scholar 

  21. So, M. C., Wiederrecht, G. P., Mondloch, J. E., Hupp, J. T. & Farha, O. K. Metal–organic framework materials for light-harvesting and energy transfer. Chem. Commun. 51, 3501–3510 (2015).

    Article  CAS  Google Scholar 

  22. Wang, J.-L., Wang, C. & Lin, W. Metal–organic frameworks for light harvesting and photocatalysis. ACS Catal. 2, 2630–2640 (2012).

    Article  CAS  Google Scholar 

  23. Katz, M. J. et al. Simple and compelling biomimetic metal–organic framework catalyst for the degradation of nerve agent simulants. Angew. Chem. Int. Ed. Engl. 53, 497–501 (2014).

    Article  CAS  Google Scholar 

  24. Katz, M. J. et al. Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH2 . Chem. Sci. 6, 2286–2291 (2015).

    Article  CAS  Google Scholar 

  25. Nunes, P., Gomes, A. C., Pillinger, M., Gonçalves, I. S. & Abrantes, M. Promotion of phosphoester hydrolysis by the Zr(IV)-based metal–organic framework UiO-67. Micropor. Mesopor. Mater. 208, 21–29 (2015).

    Article  CAS  Google Scholar 

  26. López-Maya, E. et al. Textile/metal–organic-framework composites as self-detoxifying filters for chemical-warfare agents. Angew. Chem. Int. Ed. Engl. 54, 6790–6794 (2015).

    Article  CAS  Google Scholar 

  27. Cavka, J. H. et al. A new zirconium inorganic building brick forming metal–organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Article  CAS  Google Scholar 

  28. Burtch, N. C., Jasuja, H. & Walton, K. S. Water stability and adsorption in metal–organic frameworks. Chem. Rev. 114, 10575–10612 (2014).

    Article  CAS  Google Scholar 

  29. Bosch, M., Zhang, M. & Zhou, H.-C. Increasing the stability of metal–organic frameworks. Adv. Chem. 2014, 182327 (2014).

    Article  CAS  Google Scholar 

  30. Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    Article  CAS  Google Scholar 

  31. Canivet, J., Fateeva, A., Guo, Y., Coasne, B. & Farrusseng, D. Water adsorption in MOFs: fundamentals and applications. Chem. Soc. Rev. 43, 5594–5617 (2014).

    Article  CAS  Google Scholar 

  32. Bon, V., Senkovska, I., Baburin, I. A. & Kaskel, S. Zr- and Hf-based metal–organic frameworks: tracking down the polymorphism. Cryst. Growth Des. 13, 1231–1237 (2013).

    Article  CAS  Google Scholar 

  33. Wang, T. C. et al. Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. J. Am. Chem. Soc. 137, 3585–3591 (2015).

    Article  CAS  Google Scholar 

  34. Kim, M., Cahill, J. F., Fei, H., Prather, K. A. & Cohen, S. M. Postsynthetic ligand and cation exchange in robust metal–organic frameworks. J. Am. Chem. Soc. 134, 18082–18088 (2012).

    Article  CAS  Google Scholar 

  35. Devic, T. & Serre, C. High valence 3p and transition metal based MOFs. Chem. Soc. Rev. 43, 6097–6115 (2014).

    Article  CAS  Google Scholar 

  36. Lee, K., Howe, J. D., Lin, L.-C., Smit, B. & Neaton, J. B. Small-molecule adsorption in open-site metal–organic frameworks: a systematic density functional theory study for rational design. Chem. Mater. 27, 668–678 (2015).

    Article  CAS  Google Scholar 

  37. Colon, Y. J. & Snurr, R. Q. High-throughput computational screening of metal–organic frameworks. Chem. Soc. Rev. 43, 5735–5749 (2014).

    Article  CAS  Google Scholar 

  38. Férey, G., Mellot-Draznieks, C., Serre, C. & Millange, F. Crystallized frameworks with giant pores: are there limits to the possible? Acc. Chem. Res. 38, 217–225 (2005).

    Article  CAS  Google Scholar 

  39. Haldoupis, E., Nair, S. & Sholl, D. S. Pore size analysis of > 250,000 hypothetical zeolites. Phys. Chem. Chem. Phys. 13, 5053–5060 (2011).

    Article  CAS  Google Scholar 

  40. Zhao, X. et al. Selective anion exchange with nanogated isoreticular positive metal–organic frameworks. Nat. Commun. 4, 2344 (2013).

    Article  Google Scholar 

  41. Liu, X., Demir, N. K., Wu, Z. & Li, K. Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 137, 6999–7002 (2015).

    Article  CAS  Google Scholar 

  42. Henninger, S. K., Habib, H. A. & Janiak, C. MOFs as adsorbents for low temperature heating and cooling applications. J. Am. Chem. Soc. 131, 2776–2777 (2009).

    Article  CAS  Google Scholar 

  43. Cadiau, A. et al. Design of hydrophilic metal–organic framework water adsorbents for heat reallocation. Adv. Mater. 27, 4775–4780 (2015).

    Article  CAS  Google Scholar 

  44. Wu, H., Yildirim, T. & Zhou, W. Exceptional mechanical stability of highly porous zirconium metal–organic framework UiO-66 and its important implications. J. Phys. Chem. Lett. 4, 925–930 (2013).

    Article  CAS  Google Scholar 

  45. Ramaswamy, P., Wong, N. E. & Shimizu, G. K. MOFs as proton conductors — challenges and opportunities. Chem. Soc. Rev. 43, 5913–5932 (2014).

    Article  CAS  Google Scholar 

  46. Sadakiyo, M., Yamada, T. & Kitagawa, H. Rational designs for highly proton-conductive metal–organic frameworks. J. Am. Chem. Soc. 131, 9906–9907 (2009).

    Article  CAS  Google Scholar 

  47. Horike, S., Umeyama, D. & Kitagawa, S. Ion conductivity and transport by porous coordination polymers and metal–organic frameworks. Acc. Chem. Res. 46, 2376–2384 (2013).

    Article  CAS  Google Scholar 

  48. Barea, E., Montoro, C. & Navarro, J. A. R. Toxic gas removal — metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev. 43, 5419–5430 (2014).

    Article  CAS  Google Scholar 

  49. DeCoste, J. B. & Peterson, G. W. Metal–organic frameworks for air purification of toxic chemicals. Chem. Rev. 114, 5695–5727 (2014).

    Article  CAS  Google Scholar 

  50. Huxford, R. C., Della Rocca, J. & Lin, W. Metal–organic frameworks as potential drug carriers. Curr. Opin. Chem. Biol. 14, 262–268 (2010).

    Article  CAS  Google Scholar 

  51. Horcajada, P. et al. Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012).

    Article  CAS  Google Scholar 

  52. Liédana, N., Galve, A., Rubio, C., Téllez, C. & Coronas, J. CAF@ZIF-8: one-step encapsulation of caffeine in MOF. ACS Appl. Mater. Interfaces 4, 5016–5021 (2012).

    Article  CAS  Google Scholar 

  53. Tan, J. C. & Cheetham, A. K. Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure-property relationships. Chem. Soc. Rev. 40, 1059–1080 (2011).

    Article  CAS  Google Scholar 

  54. Abney, C. W. et al. Topotactic transformations of metal–organic frameworks to highly porous and stable inorganic sorbents for efficient radionuclide sequestration. Chem. Mater. 26, 5231–5243 (2014).

    Article  CAS  Google Scholar 

  55. Cunha, D. et al. Rationale of drug encapsulation and release from biocompatible porous metal–organic frameworks. Chem. Mater. 25, 2767–2776 (2013).

    Article  CAS  Google Scholar 

  56. Mouchaham, G. et al. A robust infinite zirconium phenolate building unit to enhance the chemical stability of Zr MOFs. Angew. Chem. Int. Ed. Engl. 54, 13297–13301 (2015).

    Article  CAS  Google Scholar 

  57. Huang, X., Zhang, J. & Chen, X. [Zn(bim)2]·(H2O)1.67: a metal–organic open-framework with sodalite topology. Chin. Sci. Bull. 48, 1531–1534 (2003).

    Article  CAS  Google Scholar 

  58. Zhang, J.-P., Zhang, Y.-B., Lin, J.-B. & Chen, X.-M. Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev. 112, 1001–1033 (2012).

    Article  CAS  Google Scholar 

  59. Banerjee, R. et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 131, 3875–3877 (2009).

    Article  CAS  Google Scholar 

  60. Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008).

    Article  CAS  Google Scholar 

  61. Phan, A. et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43, 58–67 (2010).

    Article  CAS  Google Scholar 

  62. Huang, X. C., Lin, Y. Y., Zhang, J. P. & Chen, X. M. Ligand-directed strategy for zeolite-type metal–organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. Engl. 45, 1557–1559 (2006).

    Article  CAS  Google Scholar 

  63. Zhang, J. P. & Chen, X. M. Crystal engineering of binary metal imidazolate and triazolate frameworks. Chem. Commun. 1689–1699 (2006).

  64. Zhang, J. P., Lin, Y. Y., Huang, X. C. & Chen, X. M. Copper(I) 1,2,4-triazolates and related complexes: studies of the solvothermal ligand reactions, network topologies, and photoluminescence properties. J. Am. Chem. Soc. 127, 5495–5506 (2005).

    Article  CAS  Google Scholar 

  65. Li, J.-R. et al. Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type MOF material with N-rich chiral open channels. Chem. Eur. J. 14, 2771–2776 (2008).

    Article  CAS  Google Scholar 

  66. Alkordi, M. H. & Eddaoudi, M. in Supramolecular Chemistry: From Molecules to Nanomaterials Vol. 6 (eds Steed, J. W. & Gale, P. A. ) 3087–3107 (Wiley, 2012).

    Google Scholar 

  67. Liu, Y., Kravtsov, V. C. & Eddaoudi, M. Template-directed assembly of zeolite-like metal–organic frameworks (ZMOFs): a usf-ZMOF with an unprecedented zeolite topology. Angew. Chem. Int. Ed. Engl. 47, 8446–8449 (2008).

    Article  CAS  Google Scholar 

  68. Tan, K. et al. Water interactions in metal–organic frameworks. CrystEngComm 17, 247–260 (2015).

    Article  CAS  Google Scholar 

  69. Yang, C. et al. Fluorous metal–organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage. J. Am. Chem. Soc. 133, 18094–18097 (2011).

    Article  CAS  Google Scholar 

  70. Colombo, V. et al. High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chem. Sci. 2, 1311–1319 (2011).

    Article  CAS  Google Scholar 

  71. Dincă, M., Yu, A. F. & Long, J. R. Microporous metal–organic frameworks incorporating 1,4-benzeneditetrazolate: syntheses, structures, and hydrogen storage properties. J. Am. Chem. Soc. 128, 8904–8913 (2006).

    Article  CAS  Google Scholar 

  72. Fischer, N., Klapotke, T. M., Scheutzow, S. & Stierstorfer, J. Hydrazinium 5-aminotetrazolate: an insensitive energetic material containing 83.72% nitrogen. Cent. Eur. J. Energ. Mater. 5, 3–18 (2008).

    CAS  Google Scholar 

  73. Serre, C. et al. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C–C6H4–CO2}·{HO2C–C6H4–CO2H}x·H2Oy . J. Am. Chem. Soc. 124, 13519–13526 (2002).

    Article  CAS  Google Scholar 

  74. Férey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005).

    Article  CAS  Google Scholar 

  75. Loiseau, T. et al. MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-oxo-centered trinuclear units. J. Am. Chem. Soc. 128, 10223–10230 (2006).

    Article  CAS  Google Scholar 

  76. Surblé, S. et al. Synthesis of MIL-102, a chromium carboxylate metal–organic framework, with gas sorption analysis. J. Am. Chem. Soc. 128, 14889–14896 (2006).

    Article  CAS  Google Scholar 

  77. Horcajada, P. et al. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem. Commun. 2820–2822 (2007).

  78. Liang, Y.-T. et al. Four super water-stable lanthanide-organic frameworks with active uncoordinated carboxylic and pyridyl groups for selective luminescence sensing of Fe3+. Dalton Trans. 44, 13325–13330 (2015).

    Article  CAS  Google Scholar 

  79. Surblé, S., Serre, C., Millange, F., Pelle, F. & Férey, G. Synthesis, characterisation and properties of a new three-dimensional yttrium–europium coordination polymer. Solid State Sci. 7, 1074–1082 (2005).

    Article  CAS  Google Scholar 

  80. Xue, D.-X. et al. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction. J. Am. Chem. Soc. 137, 5034–5040 (2015).

    Article  CAS  Google Scholar 

  81. Alezi, D. et al. Quest for highly connected metal–organic framework platforms: rare-earth polynuclear clusters versatility meets net topology needs. J. Am. Chem. Soc. 137, 5421–5430 (2015).

    Article  CAS  Google Scholar 

  82. Duan, J. et al. High CO2/N2/O2/CO separation in a chemically robust porous coordination polymer with low binding energy. Chem. Sci. 5, 660–666 (2014).

    Article  CAS  Google Scholar 

  83. Duan, J. et al. High CO2/CH4 and C2 hydrocarbons/CH4 selectivity in a chemically robust porous coordination polymer. Adv. Funct. Mater. 23, 3525–3530 (2013).

    Article  CAS  Google Scholar 

  84. Horcajada, P. et al. Extended and functionalized porous iron(III) tri- or dicarboxylates with MIL-100/101 topologies. Chem. Commun. 50, 6872–6874 (2014).

    Article  CAS  Google Scholar 

  85. Feng, D. et al. Stable metal–organic frameworks containing single-molecule traps for enzyme encapsulation. Nat. Commun. 6, 5979 (2015).

    Article  CAS  Google Scholar 

  86. Vaesen, S. et al. A robust amino-functionalized titanium(IV) based MOF for improved separation of acid gases. Chem. Commun. 49, 10082–10084 (2013).

    Article  CAS  Google Scholar 

  87. Kandiah, M. et al. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 22, 6632–6640 (2010).

    Article  CAS  Google Scholar 

  88. Schaate, A. et al. Modulated synthesis of Zr-based metal–organic frameworks: from nano to single crystals. Chem. Eur. J. 17, 6643–6651 (2011).

    Article  CAS  Google Scholar 

  89. Valenzano, L. et al. Disclosing the complex structure of UiO-66 metal–organic framework: a synergic combination of experiment and theory. Chem. Mater. 23, 1700–1718 (2011).

    Article  CAS  Google Scholar 

  90. Bon, V., Senkovskyy, V., Senkovska, I. & Kaskel, S. Zr(IV) and Hf(IV) based metal–organic frameworks with reo-topology. Chem. Commun. 48, 8407–8409 (2012).

    Article  CAS  Google Scholar 

  91. Feng, D. et al. Zirconium-metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed. Engl. 51, 10307–10310 (2012).

    Article  CAS  Google Scholar 

  92. Morris, W. et al. Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks. Inorg. Chem. 51, 6443–6445 (2012).

    Article  CAS  Google Scholar 

  93. Wu, H. et al. Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. J. Am. Chem. Soc. 135, 10525–10532 (2013).

    Article  CAS  Google Scholar 

  94. Furukawa, H. et al. Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014).

    Article  CAS  Google Scholar 

  95. Jiang, J. et al. Superacidity in sulfated metal–organic framework-808. J. Am. Chem. Soc. 136, 12844–12847 (2014).

    Article  CAS  Google Scholar 

  96. Liu, T.-F. et al. Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal–organic frameworks with high surface area. J. Am. Chem. Soc. 137, 413–419 (2014).

    Article  CAS  Google Scholar 

  97. Feng, D. et al. A highly stable zeotype mesoporous zirconium metal–organic framework with ultralarge pores. Angew. Chem. Int. Ed. Engl. 54, 149–154 (2015).

    Article  CAS  Google Scholar 

  98. Kalidindi, S. B. et al. Chemical and structural stability of zirconium-based metal–organic frameworks with large three-dimensional pores by linker engineering. Angew. Chem. Int. Ed. Engl. 54, 221–226 (2015).

    Article  CAS  Google Scholar 

  99. Mondloch, J. E. et al. Vapor-phase metalation by atomic layer deposition in a metal–organic framework. J. Am. Chem. Soc. 135, 10294–10297 (2013).

    Article  CAS  Google Scholar 

  100. Seo, Y. K. et al. Energy-efficient dehumidification over hierarchically porous metal–organic frameworks as advanced water adsorbents. Adv. Mater. 24, 806–810 (2012).

    Article  CAS  Google Scholar 

  101. Shearer, G. C. et al. Tuned to perfection: ironing out the defects in metal–organic framework UiO-66. Chem. Mater. 26, 4068–4071 (2014).

    Article  CAS  Google Scholar 

  102. Vermoortele, F. et al. Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: the unique case of UiO-66(Zr). J. Am. Chem. Soc. 135, 11465–11468 (2013).

    Article  CAS  Google Scholar 

  103. Cliffe, M. J. et al. Correlated defect nanoregions in a metal–organic framework. Nat. Commun. 5, 4176 (2014).

    Article  CAS  Google Scholar 

  104. Mondloch, J. E. et al. Are Zr6-based MOFs water stable? Linker hydrolysis versus capillary-force-driven channel collapse. Chem. Commun. 50, 8944–8946 (2014).

    Article  CAS  Google Scholar 

  105. Gagnon, K. J., Perry, H. P. & Clearfield, A. Conventional and unconventional metal–organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem. Rev. 112, 1034–1054 (2012).

    Article  CAS  Google Scholar 

  106. Deria, P. et al. Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chem. Soc. Rev. 43, 5896–5912 (2014).

    Article  CAS  Google Scholar 

  107. Dincă, M. & Long, J. R. High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal–organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2 . J. Am. Chem. Soc. 129, 11172–11176 (2007).

    Article  CAS  Google Scholar 

  108. Cairns, A. J. et al. Supermolecular building blocks (SBBs) and crystal design: 12-connected open frameworks based on a molecular cubohemioctahedron. J. Am. Chem. Soc. 130, 1560–1561 (2008).

    Article  CAS  Google Scholar 

  109. Liu, T.-F. et al. Stepwise synthesis of robust metal–organic frameworks via postsynthetic metathesis and oxidation of metal nodes in a single-crystal to single-crystal transformation. J. Am. Chem. Soc. 136, 7813–7816 (2014).

    Article  CAS  Google Scholar 

  110. Jasuja, H., Jiao, Y., Burtch, N. C., Huang, Y.-g. & Walton, K. S. Synthesis of cobalt-, nickel-, copper-, and zinc-based, water-stable, pillared metal–organic frameworks. Langmuir 30, 14300–14307 (2014).

    Article  CAS  Google Scholar 

  111. Bennett, T. D. et al. Structure and properties of an amorphous metal–organic framework. Phys. Rev. Lett. 104, 115503 (2010).

    Article  CAS  Google Scholar 

  112. Umeyama, D., Horike, S., Inukai, M., Itakura, T. & Kitagawa, S. Reversible solid-to-liquid phase transition of coordination polymer crystals. J. Am. Chem. Soc. 137, 864–870 (2015).

    Article  CAS  Google Scholar 

  113. Sun, J.-K. & Xu, Q. Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ. Sci. 7, 2071–2100 (2014).

    Article  CAS  Google Scholar 

  114. Fujiwara, Y.-i. et al. Control of pore distribution of porous carbons derived from Mg2+ porous coordination polymers. Inorg. Chem. Front. 2, 473–476 (2015).

    Article  CAS  Google Scholar 

  115. Fu, Y. H. et al. An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. Engl. 51, 3364–3367 (2012).

    Article  CAS  Google Scholar 

  116. Makal, T. A., Wang, X. & Zhou, H.-C. Tuning the moisture and thermal stability of metal–organic frameworks through incorporation of pendant hydrophobic groups. Cryst. Growth Des. 13, 4760–4768 (2013).

    Article  CAS  Google Scholar 

  117. James, S. L. et al. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447 (2012).

    Article  CAS  Google Scholar 

  118. Chen, J. et al. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal–organic framework hybrid. ChemSusChem 6, 1545–1555 (2013).

    Article  CAS  Google Scholar 

  119. Mu, B. & Walton, K. S. Thermal analysis and heat capacity study of metal–organic frameworks. J. Phys. Chem. C 115, 22748–22754 (2011).

    Article  CAS  Google Scholar 

  120. Low, J. J. et al. Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. J. Am. Chem. Soc. 131, 15834–15842 (2009).

    Article  CAS  Google Scholar 

  121. Muller, M. et al. Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors: properties of Cu/ZnO@MOF-5 as catalyst for methanol synthesis. Chem. Mater. 20, 4576–4587 (2008).

    Article  CAS  Google Scholar 

  122. Henninger, S. K., Jeremias, F., Kummer, H. & Janiak, C. MOFs for use in adsorption heat pump processes. Eur. J. Inorg. Chem. 2012, 2625–2634 (2012).

    Article  CAS  Google Scholar 

  123. Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013).

    Article  CAS  Google Scholar 

  124. Fracaroli, A. M. et al. Metal–organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. J. Am. Chem. Soc. 136, 8863–8866 (2014).

    Article  CAS  Google Scholar 

  125. Peters, A. W., Li, Z., Farha, O. K. & Hupp, J. T. Atomically precise growth of catalytically active cobalt sulfide on flat surfaces and within a metal–organic framework via atomic layer deposition. ACS Nano 9, 8484–8490 (2015).

    Article  CAS  Google Scholar 

  126. Bhattacharjee, S., Chen, C. & Ahn, W.-S. Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv. 4, 52500–52525 (2014).

    Article  CAS  Google Scholar 

  127. Gaab, M., Trukhan, N., Maurer, S., Gummaraju, R. & Mü ller, U. The progression of Al-based metal–organic frameworks — from academic research to industrial production and applications. Micropor. Mesopor. Mater. 157, 131–136 (2012).

    Article  CAS  Google Scholar 

  128. Kang, I. J., Khan, N. A., Haque, E. & Jhung, S. H. Chemical and thermal stability of isotypic metal–organic frameworks: effect of metal ions. Chem. Eur. J. 17, 6437–6442 (2011).

    Article  CAS  Google Scholar 

  129. Schoenecker, P. M., Carson, C. G., Jasuja, H., Flemming, C. J. J. & Walton, K. S. Effect of water adsorption on retention of structure and surface area of metal–organic frameworks. Ind. Eng. Chem. Res. 51, 6513–6519 (2012).

    Article  CAS  Google Scholar 

  130. Kosal, M. E., Chou, J.-H., Wilson, S. R. & Suslick, K. S. A functional zeolite analogue assembled from metalloporphyrins. Nat. Mater. 1, 118–121 (2002).

    Article  CAS  Google Scholar 

  131. Guillerm, V. et al. A series of isoreticular, highly stable, porous zirconium oxide based metal–organic frameworks. Angew. Chem. Int. Ed. Engl. 51, 9267–9271 (2012).

    Article  CAS  Google Scholar 

  132. ul Qadir, N., Said, S. A. M. & Bahaidarah, H. M. Structural stability of metal organic frameworks in aqueous media — controlling factors and methods to improve hydrostability and hydrothermal cyclic stability. Micropor. Mesopor. Mater. 201, 61–90 (2015).

    Article  CAS  Google Scholar 

  133. Li, W. et al. Mechanical tunability via hydrogen bonding in metal–organic frameworks with the perovskite architecture. J. Am. Chem. Soc. 136, 7801–7804 (2014).

    Article  CAS  Google Scholar 

  134. Yang, J., Grzech, A., Mulder, F. M. & Dingemans, T. J. Methyl modified MOF-5: a water stable hydrogen storage material. Chem. Commun. 47, 5244–5246 (2011).

    Article  CAS  Google Scholar 

  135. Serre, C. Superhydrophobicity in highly fluorinated porous metal–organic frameworks. Angew. Chem. Int. Ed. Engl. 51, 6048–6050 (2012).

    Article  CAS  Google Scholar 

  136. Nguyen, N. T. et al. Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks. Angew. Chem. Int. Ed. Engl. 53, 10645–10648 (2014).

    Article  CAS  Google Scholar 

  137. Katsenis, A. D. et al. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal–organic framework. Nat. Commun. 6, 6662 (2015).

    Article  CAS  Google Scholar 

  138. Coudert, F.-X. Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 27, 1905–1916 (2015).

    Article  CAS  Google Scholar 

  139. Li, W., Henke, S. & Cheetham, A. K. Research update: mechanical properties of metal–organic frameworks — influence of structure and chemical bonding. APL Mater. 2, 123902 (2014).

    Article  CAS  Google Scholar 

  140. Chapman, K. W., Halder, G. J. & Chupas, P. J. Pressure-induced amorphization and porosity modification in a metal–organic framework. J. Am. Chem. Soc. 131, 17546–17547 (2009).

    Article  CAS  Google Scholar 

  141. Van de Voorde, B. et al. Improving the mechanical stability of zirconium-based metal–organic frameworks by incorporation of acidic modulators. J. Mater. Chem. A 3, 1737–1742 (2015).

    Article  CAS  Google Scholar 

  142. Bennett, T. D., Sotelo, J., Tan, J.-C. & Moggach, S. A. Mechanical properties of zeolitic metal–organic frameworks: mechanically flexible topologies and stabilization against structural collapse. CrystEngComm 17, 286–289 (2015).

    Article  CAS  Google Scholar 

  143. Deria, P., Chung, Y. G., Snurr, R. Q., Hupp, J. T. & Farha, O. K. Water stabilization of Zr6-based metal–organic frameworks via solvent-assisted ligand incorporation. Chem. Sci. 6, 5172–5176 (2015).

    Article  CAS  Google Scholar 

  144. Kuc, A., Enyashin, A. & Seifert, G. Metal–organic frameworks: structural, energetic, electronic, and mechanical properties. J. Phys. Chem. B 111, 8179–8186 (2007).

    Article  CAS  Google Scholar 

  145. Sarkisov, L., Martin, R. L., Haranczyk, M. & Smit, B. On the flexibility of metal–organic frameworks. J. Am. Chem. Soc. 136, 2228–2231 (2014).

    Article  CAS  Google Scholar 

  146. Tan, J. C., Bennett, T. D. & Cheetham, A. K. Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 107, 9938–9943 (2010).

    Article  Google Scholar 

  147. Adams, R., Carson, C., Ward, J., Tannenbaum, R. & Koros, W. Metal–organic framework mixed matrix membranes for gas separations. Micropor. Mesopor. Mater. 131, 13–20 (2010).

    Article  CAS  Google Scholar 

  148. Zornoza, B., Tellez, C., Coronas, J., Gascon, J. & Kapteijn, F. Metal–organic framework based mixed matrix membranes: an increasingly important field of research with a large application potential. Micropor. Mesopor. Mater. 166, 67–78 (2013).

    Article  CAS  Google Scholar 

  149. Ortiz, A. U., Boutin, A., Fuchs, A. H. & Coudert, F.-X. Metal–organic frameworks with wine-rack motif: what determines their flexibility and elastic properties? J. Chem. Phys. 138, 174703 (2013).

    Article  CAS  Google Scholar 

  150. Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373–1382 (2004).

    Article  CAS  Google Scholar 

  151. Millange, F., Serre, C., Guillou, N., Ferey, G. & Walton, R. I. Structural effects of solvents on the breathing of metal–organic frameworks: an in situ diffraction study. Angew. Chem. Int. Ed. Engl. 47, 4100–4105 (2008).

    Article  CAS  Google Scholar 

  152. Kitagawa, S. & Uemura, K. Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chem. Soc. Rev. 34, 109–119 (2005).

    Article  CAS  Google Scholar 

  153. Serre, C. et al. Role of solvent–host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828–1831 (2007).

    Article  CAS  Google Scholar 

  154. Zornoza, B. et al. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chem. Commun. 47, 9522–9524 (2011).

    Article  CAS  Google Scholar 

  155. Llewellyn, P. L. et al. Complex adsorption of short linear alkanes in the flexible metal–organic-framework MIL-53(Fe). J. Am. Chem. Soc. 131, 13002–13008 (2009).

    Article  CAS  Google Scholar 

  156. Horcajada, P. et al. How linker's modification controls swelling properties of highly flexible iron(III) dicarboxylates MIL-88. J. Am. Chem. Soc. 133, 17839–17847 (2011).

    Article  CAS  Google Scholar 

  157. Millange, F. et al. Selective sorption of organic molecules by the flexible porous hybrid metal–organic framework MIL-53(Fe) controlled by various host–guest interactions. Chem. Mater. 22, 4237–4245 (2010).

    Article  CAS  Google Scholar 

  158. Serre, C. et al. An explanation for the very large breathing effect of a metal–organic framework during CO2 adsorption. Adv. Mater. 19, 2246–2251 (2007).

    Article  CAS  Google Scholar 

  159. Hoskins, B. F. & Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2 . J. Am. Chem. Soc. 112, 1546–1554 (1990).

    Article  CAS  Google Scholar 

  160. Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4′-bipyridine. J. Am. Chem. Soc. 116, 1151–1152 (1994).

    Article  CAS  Google Scholar 

  161. Wang, C., Xie, Z., deKrafft, K. E. & Lin, W. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133, 13445–13454 (2011).

    Article  CAS  Google Scholar 

  162. Wang, C., Wang, J.-L. & Lin, W. Elucidating molecular iridium water oxidation catalysts using metal–organic frameworks: a comprehensive structural, catalytic, spectroscopic, and kinetic study. J. Am. Chem. Soc. 134, 19895–19908 (2012).

    Article  CAS  Google Scholar 

  163. Schlichte, K., Kratzke, T. & Kaskel, S. Improved synthesis, thermal stability and catalytic properties of the metal–organic framework compound CU3(BTC)2 . Micropor. Mesopor. Mater. 73, 81–88 (2004).

    Article  CAS  Google Scholar 

  164. Alkordi, M. H., Liu, Y., Larsen, R. W., Eubank, J. F. & Eddaoudi, M. Zeolite-like metal–organic frameworks as platforms for applications: on metalloporphyrin-based catalysts. J. Am. Chem. Soc. 130, 12639–12641 (2008).

    Article  CAS  Google Scholar 

  165. Canivet, J., Aguado, S., Schuurman, Y. & Farrusseng, D. MOF-supported selective ethylene dimerization single-site catalysts through one-pot postsynthetic modification. J. Am. Chem. Soc. 135, 4195–4198 (2013).

    Article  CAS  Google Scholar 

  166. Kirillova, M. V. et al. Direct and remarkably efficient conversion of methane into acetic acid catalyzed by amavadine and related vanadium complexes. A synthetic and a theoretical DFT mechanistic study. J. Am. Chem. Soc. 129, 10531–10545 (2007).

    Article  CAS  Google Scholar 

  167. Phan, A., Czaja, A. U., Gándara, F., Knobler, C. B. & Yaghi, O. M. Metal–organic frameworks of vanadium as catalysts for conversion of methane to acetic acid. Inorg. Chem. 50, 7388–7390 (2011).

    Article  CAS  Google Scholar 

  168. Gao, W.-Y., Chrzanowski, M. & Ma, S. Metal–metalloporphyrin frameworks: a resurging class of functional materials. Chem. Soc. Rev. 43, 5841–5866 (2014).

    Article  CAS  Google Scholar 

  169. Harding, J. L. & Reynolds, M. M. Metal–organic frameworks as nitric oxide catalysts. J. Am. Chem. Soc. 134, 3330–3333 (2012).

    Article  CAS  Google Scholar 

  170. Harding, J. L., Metz, J. M. & Reynolds, M. M. A. Tunable, stable and bioactive MOF catalyst for generating a localized therapeutic from endogenous sources. Adv. Funct. Mater. 24, 7503–7509 (2014).

    Article  CAS  Google Scholar 

  171. Yuan, B., Pan, Y., Li, Y., Yin, B. & Jiang, H. A. Highly active heterogeneous palladium catalyst for the Suzuki–Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. Angew. Chem. Int. Ed. Engl. 49, 4054–4058 (2010).

    Article  CAS  Google Scholar 

  172. Li, P. et al. Synthesis of nanocrystals of Zr-based metal–organic frameworks with csq-net: significant enhancement in the degradation of a nerve agent simulant. Chem. Commun. 51, 10925–10928 (2015).

    Article  CAS  Google Scholar 

  173. Zou, R. Q., Sakurai, H., Han, S., Zhong, R. Q. & Xu, Q. Probing the Lewis acid sites and CO catalytic oxidation activity of the porous metal–organic polymer [Cu(5-methylisophthalate)]. J. Am. Chem. Soc. 129, 8402–8403 (2007).

    Article  CAS  Google Scholar 

  174. Zhao, Y. et al. CO catalytic oxidation by a metal–organic framework containing high density of reactive copper sites. Chem. Commun. 47, 6377–6379 (2011).

    Article  CAS  Google Scholar 

  175. Zou, R. Q., Sakurai, H. & Xu, Q. Preparation, adsorption properties, and catalytic activity of 3D porous metal–organic frameworks composed of cubic building blocks and alkali-metal ions. Angew. Chem. Int. Ed. Engl. 45, 2542–2546 (2006).

    Article  CAS  Google Scholar 

  176. Jiang, H. L. et al. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal–organic framework. J. Am. Chem. Soc. 131, 11302–11303 (2009).

    Article  CAS  Google Scholar 

  177. Wu, R. et al. Highly dispersed Au nanoparticles immobilized on Zr-based metal–organic frameworks as heterostructured catalyst for CO oxidation. J. Mater. Chem. A 1, 14294–14299 (2013).

    Article  CAS  Google Scholar 

  178. Hu, P., Morabito, J. V. & Tsung, C.-K. Core–shell catalysts of metal nanoparticle core and metal–organic framework shell. ACS Catal. 4, 4409–4419 (2014).

    Article  CAS  Google Scholar 

  179. Choi, K. M., Na, K., Somorjai, G. A. & Yaghi, O. M. Chemical environment control and enhanced catalytic performance of platinum nanoparticles embedded in nanocrystalline metal–organic frameworks. J. Am. Chem. Soc. 137, 7810–7816 (2015).

    Article  CAS  Google Scholar 

  180. Hermes, S. et al. Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew. Chem. Int. Ed. Engl. 44, 6237–6241 (2005).

    Article  CAS  Google Scholar 

  181. Liang, D.-D., Liu, S.-X., Ma, F.-J., Wei, F. & Chen, Y.-G. A. Crystalline catalyst based on a porous metal–organic framework and 12-tungstosilicic acid: particle size control by hydrothermal synthesis for the formation of dimethyl ether. Adv. Synth. Catal. 353, 733–742 (2011).

    Article  CAS  Google Scholar 

  182. Li, B. et al. Metal–organic framework based upon the synergy of a Brønsted acid framework and Lewis acid centers as a highly efficient heterogeneous catalyst for fixed-bed reactions. J. Am. Chem. Soc. 137, 4243–4248 (2015).

    Article  CAS  Google Scholar 

  183. Henschel, A., Gedrich, K., Kraehnert, R. & Kaskel, S. Catalytic properties of MIL-101. Chem. Commun. 4192–4194 (2008).

  184. Mlinar, A. N. et al. Selective propene oligomerization with nickel(II)-based metal–organic frameworks. ACS Catal. 4, 717–721 (2014).

    Article  CAS  Google Scholar 

  185. Nguyen, H. G. T. et al. Vanadium-node-functionalized UiO-66: a thermally stable MOF-supported catalyst for the gas-phase oxidative dehydrogenation of cyclohexene. ACS Catal. 4, 2496–2500 (2014).

    Article  CAS  Google Scholar 

  186. Thomas, J. M. The concept, reality and utility of single-site heterogeneous catalysts (SSHCs). Phys. Chem. Chem. Phys. 16, 7647–7661 (2014).

    Article  CAS  Google Scholar 

  187. Zhang, X., Llabrés i Xamena, F. X. & Corma, A. Gold(III) — metal–organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. J. Catal. 265, 155–160 (2009).

    Article  CAS  Google Scholar 

  188. Lee, S. et al. Oxidative dehydrogenation of cyclohexene on size selected subnanometer cobalt clusters: improved catalytic performance via evolution of cluster-assembled nanostructures. Phys. Chem. Chem. Phys. 14, 9336–9342 (2012).

    Article  CAS  Google Scholar 

  189. Yang, D. et al. Metal–organic framework nodes as nearly ideal supports for molecular catalysts: NU-1000- and UiO-66-supported iridium complexes. J. Am. Chem. Soc. 137, 7391–7396 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the US Defense Threat Reduction Agency (grant HDTRA10-1-0023; nerve agents), the Institute of Catalysis for Energy Processes at Northwestern University (V-AIM catalytic chemistry), the DOE Separations and Analysis program (MOF synthesis methods), and the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center, funded by the US Department of Energy, Office of Science, Basic Energy Sciences (awards DE FG02-03ER15457, DE-FG02-08ER15967 and DE-SC0012702, respectively) for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph T. Hupp or Omar K. Farha.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howarth, A., Liu, Y., Li, P. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat Rev Mater 1, 15018 (2016). https://doi.org/10.1038/natrevmats.2015.18

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2015.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing