Review Article

Assembly and phase transitions of colloidal crystals

  • Nature Reviews Materials 1, Article number: 15011 (2016)
  • doi:10.1038/natrevmats.2015.11
  • Download Citation
Published online:

Abstract

Micrometre-sized colloidal particles can be viewed as large atoms with tailorable size, shape and interactions. These building blocks can assemble into extremely rich structures and phases, in which the thermal motions of particles can be directly imaged and tracked using optical microscopy. Hence, colloidal particles are excellent model systems for studying phase transitions, especially for poorly understood kinetic and non-equilibrium microscale processes. Advances in colloid fabrication, assembly and computer simulations have opened up numerous possibilities for such research. In this Review, we describe recent progress in the study of colloidal crystals composed of tunable isotropic spheres, anisotropic particles and active particles. We focus on advances in crystallization, melting and solid–solid transitions, and highlight challenges and future perspectives in phase-transition studies within colloidal crystals.

  • Subscribe to Nature Reviews Materials for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Phase Transitions in Colloidal Suspensions (CRC, 1990).

  2. 2.

    Melting, freezing and colloidal suspensions. Phys. Rep. 237, 249–324 (1994).

  3. 3.

    & Video microscopy of monodisperse colloidal systems. Annu. Rev. Phys. Chem. 47, 421–462 (1996).

  4. 4.

    & Insights into phase transition kinetics from colloid science. Nature 416, 811–815 (2002).

  5. 5.

    Materials science. Colloidal encounters: a matter of attraction. Science 314, 768–769 (2006).

  6. 6.

    Playing tricks with designer ‘atoms’. Science 296, 65–66 (2002).

  7. 7.

    , , , & Direct observation of ordered latex suspension by metallurgical microscope. J. Colloid Interface Sci. 44, 330–338 (1973).

  8. 8.

    & Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

  9. 9.

    Theory of first-order phase transitions. Rep. Prog. Phys. 50, 783–859 (1987).

  10. 10.

    , , , & Imaging the homogeneous nucleation during the melting of superheated colloidal crystals. Science 338, 87–90 (2012). Homogeneous melting in 3D bulk at the single-particle level observed for the first time using colloids.

  11. 11.

    , , & Direct observation of liquid nucleus growth in homogeneous melting of colloidal crystals. Nat. Commun. 6, 6942 (2015).

  12. 12.

    & Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986).

  13. 13.

    & Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957).

  14. 14.

    Colloidal matter: packing, geometry, and entropy. Science 349, 729–735 (2015).

  15. 15.

    , , & Entropy difference between crystal phases. Nature 388, 235–236 (1997).

  16. 16.

    Two-dimensional melting. Rev. Mod. Phys. 60, 161–207 (1988).

  17. 17.

    & Phase behaviour of hard spheres confined between parallel hard plates: manipulation of colloidal crystal structures by confinement. J. Phys.: Condens. Matter 18, L371–L378 (2006).

  18. 18.

    & Freezing between two and three dimensions. Phys. Rev. Lett. 76, 4552–4555 (1996).

  19. 19.

    , , & Phase behaviour of ionic microgels. Phys. Rev. Lett. 92, 068301 (2004).

  20. 20.

    & A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature 421, 513–517 (2003).

  21. 21.

    & Two-dimensional packing of soft particles and the soft generalized Thomson problem. Soft Matter 7, 7552–7559 (2011).

  22. 22.

    , & Phase diagram of Hertzian spheres. J. Chem. Phys. 131, 044514 (2009); erratum 131, 159903 (2009).

  23. 23.

    & Crystallization of deformable spherical colloids. Phys. Rev. Lett. 105, 088305 (2010).

  24. 24.

    & Interactions between microgel particles. Soft Matter 5, 2681–2685 (2009).

  25. 25.

    et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).

  26. 26.

    , , , & Self-assembly of two-dimensional colloidal clusters by tuning the hydrophobicity, composition, and packing geometry. Phys. Rev. Lett. 110, 138301 (2013).

  27. 27.

    , & Controlled self-assembly of periodic and aperiodic cluster crystals. Phys. Rev. Lett. 113, 098304 (2014).

  28. 28.

    , , & Computational self-assembly of a one-component icosahedral quasicrystal. Nat. Mater. 14, 109–116 (2015).

  29. 29.

    , & Mosaic two-lengthscale quasicrystals. Nature 506, 208–211 (2014).

  30. 30.

    Tunable colloids: control of colloidal phase transitions with tunable interactions. Soft Matter 3, 1099–1115 (2007).

  31. 31.

    , , , & Imaging the sublimation dynamics of colloidal crystallites. Science 314, 795–798 (2006).

  32. 32.

    et al. Shape-sensitive crystallization in colloidal superball fluids. Proc. Natl Acad. Sci. USA 112, 5286–5290 (2015).

  33. 33.

    , , , & Direct measurement of critical Casimir forces. Nature 451, 172–175 (2008).

  34. 34.

    et al. Controlling colloidal phase transitions with critical Casimir forces. Nat. Commun. 4, 1584 (2013).

  35. 35.

    et al. Critical Casimir forces and colloidal phase transitions in a near-critical solvent: a simple model reveals a rich phase diagram. Phys. Rev. Lett. 114, 038301 (2015).

  36. 36.

    , , & Casimir-like forces at the percolation transition. Nat. Commun. 5, 3267 (2014).

  37. 37.

    , , , & Does C60 have a liquid phase? Nature 365, 425–426 (1993).

  38. 38.

    , , & Direct observation of a local structural mechanism for dynamic arrest. Nat. Mater. 7, 556–561 (2008).

  39. 39.

    & Equilibrium phase behaviour of polydisperse hard spheres. Phys. Rev. Lett. 91, 068301 (2003).

  40. 40.

    , & From crystals to disordered crystals: a hidden order–disorder transition. Sci. Rep. 5, 15378 (2015).

  41. 41.

    , , & Normal modes and density of states of disordered colloidal solids. Science 329, 656–658 (2010).

  42. 42.

    et al. Phonons in two-dimensional soft colloidal crystals. Phys. Rev. E 88, 022315 (2013).

  43. 43.

    , , & Nature of an electric-field-induced colloidal martensitic transition. Phys. Rev. Lett. 92, 058301 (2004).

  44. 44.

    , , & Colloidal assembly directed by virtual magnetic moulds. Nature 503, 99–103 (2013).

  45. 45.

    & Holographic assembly of quasicrystalline photonic heterostructures. Opt. Express 13, 5434–5439 (2005).

  46. 46.

    et al. Assembling of three-dimensional crystals by optical depletion force induced by a single focused laser beam. Opt. Express 20, 9616–9623 (2012).

  47. 47.

    , , , & Wafer-scale fabrication of ordered binary colloidal monolayers with adjustable stoichiometries. Adv. Funct. Mater. 21, 3064–3073 (2011).

  48. 48.

    , , & Rhombic preordering on a square substrate. Phys. Rev. Lett. 110, 118301 (2013).

  49. 49.

    , , , & Melting of colloidal crystal films. Phys. Rev. Lett. 104, 205703 (2010).

  50. 50.

    , & Two-stage melting of paramagnetic colloidal crystals in two dimensions. Phys. Rev. Lett. 82, 2721–2724 (1999).

  51. 51.

    & Grain boundary dynamics under mechanical annealing in two-dimensional colloids. Phys. Rev. E 70, 020401 (2004).

  52. 52.

    , , & Dislocation reactions, grain boundaries, and irreversibility in two-dimensional lattices using topological tweezers. Proc. Natl Acad. Sci. USA 110, 15544–15548 (2013).

  53. 53.

    , , & Photonic Crystals: Molding the Flow of Light (Princeton Univ., 2011).

  54. 54.

    Monodispersed metal (hydrous) oxides: a fascinating field of colloid science. Acc. Chem. Res. 14, 22–29 (1981).

  55. 55.

    , , , & Studies on suspension and emulsion. XLVII. Anomalous composite polymer emulsion particles with voids produced by seeded emulsion polymerization. J. Polym. Sci. 19, 143–147 (1981).

  56. 56.

    , & Recent advances with anisotropic particles. Curr. Opin. Colloid Interface Sci. 16, 195–202 (2011).

  57. 57.

    et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

  58. 58.

    , & Recent progress on patchy colloids and their self assembly. J. Phys.: Condens. Matter 25, 193101 (2013).

  59. 59.

    & Shape-anisotropic colloids: building blocks for complex assemblies. Curr. Opin. Colloid Interface Sci. 16, 96–105 (2011).

  60. 60.

    , , & Colloidal-sized metal–organic frameworks: synthesis and applications. Acc. Chem. Res. 47, 459–469 (2013).

  61. 61.

    , , & Anisotropic responsive microgels with tuneable shape and interactions. Nanoscale 7, 15971–15982 (2015).

  62. 62.

    , , , & Premelting at defects within bulk colloidal crystals. Science 309, 1207–1210 (2005).

  63. 63.

    et al. A general approach to DNA-programmable atom equivalents. Nat. Mater. 12, 741–746 (2013).

  64. 64.

    , , & Re-entrant solidification in polymer–colloid mixtures as a consequence of competing entropic and enthalpic attractions. Nat. Mater. 14, 61–65 (2014).

  65. 65.

    , & Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

  66. 66.

    , , & Phase diagram and structural diversity of a family of truncated cubes: degenerate close-packed structures and vacancy-rich states. Phys. Rev. Lett. 111, 015501 (2013).

  67. 67.

    in Advances in Chemical Physics Vol. 156 (eds Rice, S. A. & Dinner, A. R.) 35–71 (Wiley, 2015).

  68. 68.

    & Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007). Review of the assembly of numerous anisotropic particles.

  69. 69.

    , & Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew. Chem. Int. Ed. Engl. 50, 360–388 (2011).

  70. 70.

    , & Toward design rules of directional Janus colloidal assembly. Annu. Rev. Phys. Chem. 66, 581–600 (2015).

  71. 71.

    & Phase diagram of two-dimensional hard ellipses. J. Chem. Phys. 140, 204502 (2014).

  72. 72.

    , & Further details on the phase diagram of hard ellipsoids of revolution. J. Chem. Phys. 138, 064501 (2013).

  73. 73.

    , & Glass transitions in quasi-two-dimensional suspensions of colloidal ellipsoids. Phys. Rev. Lett. 107, 065702 (2011).

  74. 74.

    et al. Switching plastic crystals of colloidal rods with electric fields. Nat. Commun. 5, 3092 (2014).

  75. 75.

    & Colloidal alphabet soup: monodisperse dispersions of shape-designed lithoparticles. J. Phys. Chem. C 111, 4477–4480 (2007).

  76. 76.

    , & Entropic crystal–crystal transitions of Brownian squares. Proc. Natl Acad. Sci. USA 108, 2684–2687 (2011).

  77. 77.

    & Self-organized chiral colloidal crystals of Brownian square crosses. J. Phys. Cond. Matter 26, 152101 (2014).

  78. 78.

    , & Local chiral symmetry breaking in triatic liquid crystals. Nat. Commun. 3 801 (2012).

  79. 79.

    , & A novel chiral phase of achiral hard triangles and an entropy-driven demixing of enantiomers. Soft Matter 11, 8684–8691 (2015).

  80. 80.

    et al. Cubic crystals from cubic colloids. Soft Matter 7, 4139–4142 (2011).

  81. 81.

    , & Fabrication of polyhedral particles from spherical colloids and their self-assembly into rotator phases. Angew. Chem. Int. Ed. Engl. 53, 13830–13834 (2014).

  82. 82.

    et al. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nat. Mater. 10, 872–876 (2011).

  83. 83.

    et al. Janus particle synthesis and assembly. Adv. Mater. 22, 1060–1071 (2010).

  84. 84.

    & Janus particles: synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113, 5194–5261 (2013).

  85. 85.

    , & Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012).

  86. 86.

    , & Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).

  87. 87.

    , & Entropy favours open colloidal lattices. Nat. Mater. 12, 217–222 (2013).

  88. 88.

    et al. Reversible self-assembly of patchy particles into monodisperse icosahedral clusters. J. Chem. Phys. 127, 085106 (2007).

  89. 89.

    , , & Phase diagram of trivalent and pentavalent patchy particles. J. Phys.: Condens. Matter 24, 064113 (2012).

  90. 90.

    & Patterning symmetry in the rational design of colloidal crystals. Nat. Commun. 3, 975 (2012).

  91. 91.

    & Theory of two-dimensional self-assembly of Janus colloids: crystallization and orientational ordering. Soft Matter 10, 262–274 (2014).

  92. 92.

    & The statistical mechanics of dynamic pathways to self-assembly. Annu. Rev. Phys. Chem. 66, 143–163 (2015).

  93. 93.

    , , , & Predicting crystals of Janus colloids. J. Chem. Phys. 138, 164505 (2013).

  94. 94.

    & Programming colloidal phase transitions with DNA strand displacement. Science 347, 639–642 (2015).

  95. 95.

    et al. Driving diffusionless transformations in colloidal crystals using DNA handshaking. Nat. Commun. 3, 1209 (2012).

  96. 96.

    et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505, 73–77 (2014).

  97. 97.

    & Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling. Proc. Natl Acad. Sci. USA 108, 15687–15692 (2011).

  98. 98.

    , & Size limits of self-assembled colloidal structures made using specific interactions. Proc. Natl Acad. Sci. USA 111, 15918–15923 (2014).

  99. 99.

    , & Rational design of self-assembly pathways for complex multicomponent structures. Proc. Natl Acad. Sci. USA 112, 6313–6318 (2015).

  100. 100.

    & Numerical evidence for nucleated self-assembly of DNA brick structures. Phys. Rev. Lett. 112, 238103 (2014).

  101. 101.

    , & Programmable materials and the nature of the DNA bond. Science 347, 840–842 (2015).

  102. 102.

    et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

  103. 103.

    , & Dense regular packings of irregular nonconvex particles. Phys. Rev. Lett. 107, 155501 (2011).

  104. 104.

    et al. Topological colloids. Nature 493, 200–205 (2013).

  105. 105.

    , , , & Reconfigurable knots and links in chiral nematic colloids. Science 333, 62–65 (2011).

  106. 106.

    , , & Biomimetic behaviour of synthetic particles: from microscopic randomness to macroscopic control. Phys. Chem. Chem. Phys. 12, 1423–1435 (2010).

  107. 107.

    et al. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110, 238301 (2013).

  108. 108.

    , & Fast-moving bacteria self-organize into active two-dimensional crystals of rotating cells. Phys. Rev. Lett. 114, 158102 (2015).

  109. 109.

    , & Rotating crystals of magnetic Janus colloids. Soft Matter 11, 147–153 (2015).

  110. 110.

    , , , & Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013). First experimental assembly of active colloidal particles into crystals.

  111. 111.

    et al. Nonequilibrium equation of state in suspensions of active colloids. Phys. Rev. X 5, 011004 (2015).

  112. 112.

    , , & Nucleation and growth of colloidal crystals. Phys. Rev. Lett. 57, 1733–1736 (1986).

  113. 113.

    Nucleation: theory and applications to protein solutions and colloidal suspensions. J. Phys.: Condens. Matter 19, 033101 (2007).

  114. 114.

    , , & Microscopic mechanisms of equilibrium melting of a solid. Science 346, 729–732 (2014).

  115. 115.

    , , , & Non-classical nucleation in a solid-solid transition of confined hard spheres. Phys. Rev. Lett. 115, 185701 (2015).

  116. 116.

    , , & Elastic instability of a crystal growing on a curved surface. Science 343, 634–637 (2014).

  117. 117.

    , & Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization. Nat. Phys. 10, 73–79 (2014).

  118. 118.

    & Kinetics of crystallization in hard-sphere colloidal suspensions. Phys. Rev. E 64, 041604 (2001).

  119. 119.

    & Classical nucleation theory from a dynamical approach to nucleation. J. Chem. Phys. 138, 244908 (2013).

  120. 120.

    et al. Two-step nucleation mechanism in solid–solid phase transitions. Nat. Mater. 14, 101–108 (2015). First observation of diffusive nucleation in a solid–solid transition at the single-particle level and discovery of a two-step transition with an intermediate liquid nucleus.

  121. 121.

    et al. Phase transformations in binary colloidal monolayers. Soft Matter 11, 2404–2415 (2015).

  122. 122.

    , & First-order dynamical phase transitions. Phys. Rev. Lett. 113, 265702 (2014).

  123. 123.

    & Universality of phase transition dynamics: topological defects from symmetry breaking. Int. J. Mod. Phys. A 29, 1430018 (2014).

  124. 124.

    Crystallization in three- and two-dimensional colloidal suspensions. J. Phys.: Condens. Matter 21, 203101 (2009).

  125. 125.

    Crystallization kinetics of colloidal model suspensions: recent achievements and new perspectives. J. Phys.: Condens. Matter 26, 333101 (2014). Comprehensive review of colloidal crystallization, which is the most intensively studied phase transition in colloids.

  126. 126.

    , , , & Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 258–262 (2001).

  127. 127.

    & Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409, 1020–1023 (2001).

  128. 128.

    & Formation of a crystal nucleus from liquid. Proc. Natl Acad. Sci. USA 107, 14036–14041 (2010).

  129. 129.

    & Should all crystals be bcc? Landau theory of solidification and crystal nucleation. Phys. Rev. Lett. 41, 702 (1978).

  130. 130.

    , , , & Precursor-mediated crystallization process in suspensions of hard spheres. Phys. Rev. Lett. 105, 025701 (2010).

  131. 131.

    et al. Crystallization of DNA-coated colloids. Nat. Commun. 6, 7253 (2015).

  132. 132.

    & Line tension controls wall-induced crystal nucleation in hard-sphere colloids. Phys. Rev. Lett. 91, 015703 (2003).

  133. 133.

    Capillary freezing or complete wetting of hard spheres in a planar hard slit? Phys. Rev. Lett. 93, 108303 (2004).

  134. 134.

    , , & Heterogeneous crystal nucleation: the effect of lattice mismatch. Phys. Rev. Lett. 108, 025502 (2012).

  135. 135.

    , & Onset of heterogeneous crystal nucleation in colloidal suspensions. Nature 428, 404–406 (2004).

  136. 136.

    , , & Crystallization seeds favour crystallization only during initial growth. Nat. Commun. 6, 7110 (2015).

  137. 137.

    et al. Nucleation of colloidal crystals on configurable seed structures. Soft Matter 7, 4623–4628 (2011).

  138. 138.

    & Theory of two-dimensional melting. Phys. Rev. Lett. 41, 121–124 (1978).

  139. 139.

    Melting and the vector Coulomb gas in two dimensions. Phys. Rev. B 19, 1855–1856 (1979).

  140. 140.

    Grain-boundary theory of melting in two dimensions. Phys. Rev. Lett. 48, 933–935 (1982).

  141. 141.

    , , & Kibble–Zurek mechanism in colloidal monolayers. Proc. Natl Acad. Sci. USA 112, 6925–6930 (2015).

  142. 142.

    , & Pleats in crystals on curved surfaces. Nature 468, 947–951 (2010).

  143. 143.

    et al. Crystallization of hard-sphere glasses. Phys. Rev. Lett. 103, 135704 (2009).

  144. 144.

    et al. Crystallization mechanism of hard sphere glasses. Phys. Rev. Lett. 106, 215701 (2011).

  145. 145.

    & Nature and extent of melting in superheated solids: liquid–solid coexistence model. Phys. Rev. B 72, 052108 (2005).

  146. 146.

    , & Melting of microgel colloidal crystals. J. Phys. Conf. Ser. 319, 012010 (2011).

  147. 147.

    , & The physics of premelted ice and its geophysical consequences. Rev. Mod. Phys. 78, 695–741 (2006).

  148. 148.

    et al. Modes of surface premelting in attractive colloidal crystals. Nature (2016).

  149. 149.

    et al. Highly cooperative stress relaxation in two-dimensional soft colloidal crystals. Proc. Natl Acad. Sci. USA 111, 15356–15361 (2014).

  150. 150.

    Supercooled liquids for pedestrians. Phys. Rep. 476, 51–126 (2009).

  151. 151.

    , , & Melting of two-dimensional tunable-diameter colloidal crystals. Phys. Rev. E 77, 041406 (2008).

  152. 152.

    Large-scale simulations of the two-dimensional melting of hard disks. Phys. Rev. E 73, 065104 (2006).

  153. 153.

    & Two-dimensional melting: from liquid–hexatic coexistence to continuous transitions. Phys. Rev. Lett. 114, 035702 (2015).

  154. 154.

    & Two-step melting in two dimensions: first-order liquid–hexatic transition. Phys. Rev. Lett. 107, 155704 (2011).

  155. 155.

    , & Edge melting in two-dimensional solid films. Phys. Rev. B 37, 5586 (1988).

  156. 156.

    , , , & Melting of multilayer colloidal crystals confined between two walls. Phys. Rev. E 83, 011404 (2011).

  157. 157.

    & Reconstructive Phase Transitions: in Crystals and Quasicrystals (World Scientific, 1996).

  158. 158.

    , , & Martensitic transition in a confined colloidal suspension. J. Chem. Phys. 103, 1180–1190 (1995).

  159. 159.

    & Prediction of an expanded-to-condensed transition in colloidal crystals. Phys. Rev. Lett. 72, 2211–2214 (1994).

  160. 160.

    , & Guest-free monolayer clathrate and its coexistence with two-dimensional high-density ice. Proc. Natl Acad. Sci. USA 107, 5718–5722 (2010).

  161. 161.

    , , Nö, & Multiple path-dependent routes for phase-transition kinetics in thermoresponsive and field-responsive ultrasoft colloids. Phys. Rev. X 5, 011030 (2015).

  162. 162.

    & Melting of metastable crystallites in charge-stabilized colloidal suspensions. Phys. Rev. Lett. 76, 3862–3865 (1996).

  163. 163.

    & Experimental evidence for two-step nucleation in colloidal crystallization. Phys. Rev. Lett. 102, 198302 (2009).

  164. 164.

    & Localized orientational order chaperones the nucleation of rotator phases in hard polyhedral particles. Phys. Rev. Lett. 112, 048301 (2014).

  165. 165.

    , & Crystallization in a dense suspension of self-propelled particles. Phys. Rev. Lett. 108, 168301 (2012).

  166. 166.

    & Traveling and resting crystals in active systems. Phys. Rev. Lett. 110, 055702 (2013).

  167. 167.

    , & Defect-mediated phase transitions in active soft matter. Phys. Rev. Lett. 112, 168301 (2014).

  168. 168.

    & Purely hydrodynamic ordering of rotating disks at a finite Reynolds number. Nat. Commun. 6, 5994 (2015).

  169. 169.

    & Hydrodynamics determines collective motion and phase behaviour of active colloids in quasi-two-dimensional confinement. Phys. Rev. Lett. 112, 118101 (2014).

  170. 170.

    & Non-Equilibrium Phase Transitions (Springer, 2014).

  171. 171.

    , , & Melting and crystallization of colloidal hard-sphere suspensions under shear. Proc. Natl Acad. Sci. USA 106, 10564–10569 (2009).

  172. 172.

    & In situ observation of colloidal monolayer nucleation driven by an alternating electric field. Nature 429, 739–743 (2004).

  173. 173.

    , & Single crystal growth and anisotropic crystal-fluid interfacial free energy in soft colloidal systems. Phys. Rev. E 84, 011607 (2011).

  174. 174.

    et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).

  175. 175.

    , , , & id-Tracker: tracking individuals in a group by automatic identification of unmarked animals. Nat. Methods 11, 743–748 (2014).

  176. 176.

    Single-molecule spectroscopy, imaging, and photocontrol: foundations for super-resolution microscopy (Nobel lecture). Angew. Chem. Int. Ed. Engl. 54, 8067–8093 (2015).

  177. 177.

    et al. 3D structure of individual nanocrystals in solution by electron microscopy. Science 349, 290–295 (2015).

  178. 178.

    Editorial, Method of the Year 2014. Nat. Methods 12, 1 (2015).

  179. 179.

    et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 125–132 (2014).

  180. 180.

    & Key role of hydrodynamic interactions in colloidal gelation. Phys. Rev. Lett. 104, 245702 (2010).

  181. 181.

    , , , & Hydrodynamics selects the pathway for displacive transformations in DNA-linked colloidal crystallites. Proc. Natl Acad. Sci. USA 111, 4803–4808 (2014).

  182. 182.

    & Solvent hydrodynamics speed up crystal nucleation in suspensions of hard spheres. Europhys. Lett. 105, 26001–26005 (2014).

  183. 183.

    , & Hydrodynamic interactions slow down crystallization of soft colloids. Soft Matter 10, 5503–5509 (2014).

  184. 184.

    , , , & Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 11, 131–137 (2012).

Download references

Acknowledgements

This work was supported by grants RGC-GRF16301514 and ANR/RGC-A-HKUST616/14.

Author information

Affiliations

  1. Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.

    • Bo Li
    • , Di Zhou
    •  & Yilong Han
  2. Multidisciplinary Materials Research Center, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

    • Di Zhou

Authors

  1. Search for Bo Li in:

  2. Search for Di Zhou in:

  3. Search for Yilong Han in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Yilong Han.