Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A new locus regulating MICALL2 expression was identified for association with executive inhibition in children with attention deficit hyperactivity disorder

Subjects

Abstract

Impaired executive inhibition is a core deficit of attention deficit hyperactivity disorder (ADHD), which is a common childhood-onset psychiatric disorder with high heritability. In this study, we performed a two-stage genome-wide association study of executive inhibition in ADHD in Han Chinese. We used the Stroop color-word interference test to evaluate executive inhibition. After quality control, 780 samples with phenotype and covariate data were included in the discovery stage, whereas 922 samples were included in the replication stage. We identified one new significant locus at 7p22.3 for the Stroop word interference time (rs11514810, P=3.42E−09 for discovery, P=0.01176 for replication and combined P=5.249E−09). Regulatory feature analysis and expression quantitative trait loci (eQTL) data showed that this locus contributes to MICALL2 expression in the human brain. Most genes in the network interacting with MICALL2 were associated with psychiatric disorders. Furthermore, hyperactive-impulsive-like behavior was induced by reducing the expression of the zebrafish gene that is homologous to MICALL2, which could be rescued by tomoxetine (atomoxetine), a clinical medication for ADHD. Our results suggested that MICALL2 is a new susceptibility gene for executive inhibition deficiency related to hyperactive-impulsive behavior in ADHD, further emphasizing the possible role of neurodevelopmental genes in the pathogenic mechanism of ADHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA . The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 2007; 164: 942–948.

    Article  PubMed  Google Scholar 

  2. Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57: 1313–1323.

    Article  CAS  PubMed  Google Scholar 

  3. Gizer IR, Ficks C, Waldman ID . Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 2009; 126: 51–90.

    Article  CAS  PubMed  Google Scholar 

  4. Li D, Sham PC, Owen MJ, He L . Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 2006; 15: 2276–2284.

    Article  CAS  PubMed  Google Scholar 

  5. Smoller JW, Biederman J, Arbeitman L, Doyle AE, Fagerness J, Perlis RH et al. Association between the 5HT1B receptor gene (HTR1B) and the inattentive subtype of ADHD. Biol Psychiatry 2006; 59: 460–467.

    Article  CAS  PubMed  Google Scholar 

  6. Kuntsi J, Neale BM, Chen W, Faraone SV, Asherson P . The IMAGE project: methodological issues for the molecular genetic analysis of ADHD. Behav Brain Funct 2006; 2: 27.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang L, Neale BM, Liu L, Lee SH, Wray NR, Ji N et al. Polygenic transmission and complex neuro developmental network for attention deficit hyperactivity disorder: genome-wide association study of both common and rare variants. Am J Med Genet B 2013; 162B: 419–430.

    Article  Google Scholar 

  8. Neale BM, Medland SE, Ripke S, Asherson P, Franke B, Lesch K-P et al. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2010; 49: 884–897.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hinney A, Scherag A, Jarick I, Albayrak O, Putter C, Pechlivanis S et al. Genome-wide association study in German patients with attention deficit/hyperactivity disorder. Am J Med Genet B 2011; 156B: 888–897.

    Article  Google Scholar 

  10. Stergiakouli E, Hamshere M, Holmans P, Langley K, Zaharieva I, de CG et al. Investigating the contribution of common genetic variants to the risk and pathogenesis of ADHD. Am J Psychiatry 2012; 169: 186–194.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bidwell LC, Willcutt EG, Defries JC, Pennington BF . Testing for neuropsychological endophenotypes in siblings discordant for attention-deficit/hyperactivity disorder. Biol Psychiatry 2007; 62: 991–998.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  PubMed  Google Scholar 

  13. Gao L, Li Z, Chang S, Wang J . Association of interleukin-10 polymorphisms with schizophrenia: a meta-analysis. PLoS ONE 2014; 9: e90407.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nikolas MA, Nigg JT . Moderators of neuropsychological mechanism in attention-deficit hyperactivity disorder. J Abnorm Child Psychol 2015; 43: 271–281.

    Article  PubMed  PubMed Central  Google Scholar 

  15. McAuley T, Crosbie J, Charach A, Schachar R . The persistence of cognitive deficits in remitted and unremitted ADHD: a case for the state-independence of response inhibition. J Child Psychol Psychiatry 2014; 55: 292–300.

    Article  PubMed  Google Scholar 

  16. Pennington BF, Ozonoff S . Executive functions and developmental psychopathology. J Child Psychol Psychiatry 1996; 37: 51–87.

    Article  CAS  PubMed  Google Scholar 

  17. Barkley RA . Attention-deficit/hyperactivity disorder, self-regulation, and time: toward a more comprehensive theory. J Dev Behav Pediatr 1997; 18: 271–279.

    CAS  PubMed  Google Scholar 

  18. Smith EE, Jonides J . Storage and executive processes in the frontal lobes. Science 1999; 283: 1657–1661.

    Article  CAS  PubMed  Google Scholar 

  19. Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD . The unity and diversity of executive functions and their contributions to complex 'Frontal Lobe' tasks: a latent variable analysis. Cogn Psychol 2000; 41: 49–100.

    Article  CAS  PubMed  Google Scholar 

  20. Pineda D, Ardila A, Rosselli M, Cadavid C, Mancheno S, Mejia S . Executive dysfunctions in children with attention deficit hyperactivity disorder. Int J Neurosci 1998; 96: 177–196.

    Article  CAS  PubMed  Google Scholar 

  21. Barkley R . Attention-Deficit Hyperactivity Disorder (Third Edition): A Handbook for Diagnosis and Treatment. The Guilford Press: New York, NY, USA, 2006.

    Google Scholar 

  22. Barkley RA . Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 1997; 121: 65–94.

    Article  PubMed  Google Scholar 

  23. Nigg JT, Blaskey LG, Stawicki JA, Sachek J . Evaluating the endophenotype model of ADHD neuropsychological deficit: results for parents and siblings of children with ADHD combined and inattentive subtypes. J Abnorm Psychol 2004; 113: 614–625.

    Article  PubMed  Google Scholar 

  24. Barnett JH, Jones PB, Robbins TW, Muller U . Effects of the catechol-O-methyltransferase Val158Met polymorphism on executive function: a meta-analysis of the Wisconsin Card Sort Test in schizophrenia and healthy controls. Mol Psychiatry 2007; 12: 502–509.

    Article  CAS  PubMed  Google Scholar 

  25. Mione V, Canterini S, Brunamonti E, Pani P, Donno F, Fiorenza MT et al. Both the COMT Val158Met single-nucleotide polymorphism and sex-dependent differences influence response inhibition. Front Behav Neurosci 2015; 9: 127.

    Article  PubMed  PubMed Central  Google Scholar 

  26. van Goozen SH, Langley K, Northover C, Hubble K, Rubia K, Schepman K et al. Identifying mechanisms that underlie links between COMT genotype and aggression in male adolescents with ADHD. J Child Psychol Psychiatry 2016; 57: 472–480.

    Article  PubMed  Google Scholar 

  27. Thissen AJ, Bralten J, Rommelse NN, Arias-Vasquez A, Greven CU, Heslenfeld D et al. The role of age in association analyses of ADHD and related neurocognitive functioning: a proof of concept for dopaminergic and serotonergic genes. Am J Med Genet B 2015; 168: 471–479.

    Article  CAS  Google Scholar 

  28. van Rooij D, Hartman CA, van Donkelaar MM, Bralten J, von Rhein D, Hakobjan M et al. Variation in serotonin neurotransmission genes affects neural activation during response inhibition in adolescents and young adults with ADHD and healthy controls. World J Biol Psychiatry 2015; 16: 625–634.

    Article  PubMed  Google Scholar 

  29. Richards JS, Arias Vasquez A, van Rooij D, van der Meer D, Franke B, Hoekstra PJ et al. Testing differential susceptibility: plasticity genes, the social environment, and their interplay in adolescent response inhibition. World J Biol Psychiatry advance online publication, 12 May 2016, 1–14; doi: 10.3109/15622975.2016.1173724.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cummins TD, Jacoby O, Hawi Z, Nandam LS, Byrne MA, Kim BN et al. Alpha-2A adrenergic receptor gene variants are associated with increased intra-individual variability in response time. Mol Psychiatry 2014; 19: 1031–1036.

    Article  CAS  PubMed  Google Scholar 

  31. Yang L, Wang YF, Qian QJ, Biederman J, Faraone SV . DSM-IV subtypes of ADHD in a Chinese outpatient sample. J Am Acad Child Adolesc Psychiatry 2004; 43: 248–250.

    Article  PubMed  Google Scholar 

  32. Patterson N, Price AL, Reich D . Population structure and eigenanalysis. PLoS Genet 2006; 2: e190.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D . Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Zhang K, Chen H, Sun F, Xu J, Wu Z et al. A genome-wide association study in Han Chinese identifies a susceptibility locus for primary Sjogren's syndrome at 7q11.23. Nat Genet 2013; 45: 1361–1365.

    Article  CAS  PubMed  Google Scholar 

  35. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu EY, Li M, Wang W, Li Y . MaCH-admix: genotype imputation for admixed populations. Genet Epidemiol 2013; 37: 25–37.

    Article  CAS  PubMed  Google Scholar 

  37. Genomes Project C Genomes Project C Abecasis GR, Genomes Project C Auton A, Genomes Project C Brooks LD, Genomes Project C DePristo MA, Genomes Project C Durbin RM et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012; 491: 56–65.

    Article  Google Scholar 

  38. Li Y, Willer C, Sanna S, Abecasis G . Genotype imputation. Annu Rev Genomics Hum Genet 2009; 10: 387–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guo L, Du Y, Qu S, Wang J . rVarBase: an updated database for regulatory features of human variants. Nucleic Acids Res 2016; 44: D888–893.

    Article  CAS  PubMed  Google Scholar 

  40. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, Cheng C et al. Architecture of the human regulatory network derived from ENCODE data. Nature 2012; 489: 91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Trabzuni D, Ryten M, Walker R, Smith C, Imran S, Ramasamy A et al. Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies. J Neurochem 2011; 119: 275–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci 2014; 17: 1418–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cowley MJ, Pinese M, Kassahn KS, Waddell N, Pearson JV, Grimmond SM et al. PINA v2.0: mining interactome modules. Nucleic Acids Res 2012; 40: D862–D865.

    Article  CAS  PubMed  Google Scholar 

  44. Lage K, Karlberg EO, Storling ZM, Olason PI, Pedersen AG, Rigina O et al. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 2007; 25: 309–316.

    Article  CAS  PubMed  Google Scholar 

  45. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 2010; 38: W214–W220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hayes AF . Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. Guilford Press: New York, USA, 2013.

    Google Scholar 

  47. Terman JR, Mao T, Pasterkamp RJ, Yu HH, Kolodkin AL . MICALs a family of conserved flavoprotein oxidoreductases, function in plexin-mediated axonal repulsion. Cell 2002; 109: 887–900.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang L, Chang S, Li Z, Zhang K, Du Y, Ott J et al. ADHD gene: a genetic database for attention deficit hyperactivity disorder. Nucleic Acids Res 2012; 40: D1003–D1009.

    Article  CAS  PubMed  Google Scholar 

  49. Jia P, Sun J, Guo AY, Zhao Z . SZGR: a comprehensive schizophrenia gene resource. Mol Psychiatry 2010; 15: 453–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guo L, Zhang W, Chang S, Zhang L, Ott J, Wang J . MK4MDD: a multi-level knowledge base and analysis platform for major depressive disorder. PLoS ONE 2012; 7: e46335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Beuchle D, Schwarz H, Langegger M, Koch I, Aberle H . Drosophila MICAL regulates myofilament organization and synaptic structure. Mech Dev 2007; 124: 390–406.

    Article  CAS  PubMed  Google Scholar 

  52. Sakane A, Honda K, Sasaki T . Rab13 regulates neurite outgrowth in PC12 cells through its effector protein, JRAB/MICAL-L2. Mol Cell Biol 2010; 30: 1077–1087.

    Article  CAS  PubMed  Google Scholar 

  53. Terai T, Nishimura N, Kanda I, Yasui N, Sasaki T . JRAB/MICAL-L2 is a junctional Rab13-binding protein mediating the endocytic recycling of occludin. Mol Biol Cell 2006; 17: 2465–2475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nishimura N, Sasaki T . Cell-surface biotinylation to study endocytosis and recycling of occludin. Methods Mol Biol 2008; 440: 89–96.

    Article  CAS  PubMed  Google Scholar 

  55. Nishimura N, Sasaki T . Identification and characterization of JRAB/MICAL-L2, a junctional Rab13-binding protein. Methods Enzymol 2008; 438: 141–153.

    Article  CAS  PubMed  Google Scholar 

  56. Sjoholt G, Gulbrandsen AK, Lovlie R, Berle JO, Molven A, Steen VM . A human myo-inositol monophosphatase gene (IMPA2) localized in a putative susceptibility region for bipolar disorder on chromosome 18p11.2: genomic structure and polymorphism screening in manic-depressive patients. Mol Psychiatry 2000; 5: 172–180.

    Article  CAS  PubMed  Google Scholar 

  57. Shuai L, Chan RC, Wang Y . Executive function profile of Chinese boys with attention-deficit hyperactivity disorder: different subtypes and comorbidity. Archiv Clin Neuropsychol 2011; 26: 120–132.

    Article  Google Scholar 

  58. Schachar RJ, Forget-Dubois N, Dionne G, Boivin M, Robaey P . Heritability of response inhibition in children. J Int Neuropsychol Soc 2011; 17: 238–247.

    Article  PubMed  Google Scholar 

  59. Schachar RJ, Crosbie J, Barr CL, Ornstein TJ, Kennedy J, Malone M et al. Inhibition of motor responses in siblings concordant and discordant for attention deficit hyperactivity disorder. Am J Psychiatry 2005; 162: 1076–1082.

    Article  PubMed  Google Scholar 

  60. Rommelse NN, Altink ME, Oosterlaan J, Buschgens CJ, Buitelaar J, Sergeant JA . Support for an independent familial segregation of executive and intelligence endophenotypes in ADHD families. Psychol Med 2008; 38: 1595–1606.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the patients for participating in this study. This work was supported by grants from the Major State Basic Research Development Program of China (973 Program, 2014CB846100 to YW), the National Natural Science Foundation of China (31401139 to SC, 81471381 to LY, and 31571496 to DL), Beijing Municipal Science and Technology Commission (Z151100003915122), and National Institutes of Health (R01HL129132 and R01HG006292 to YL), the Medical Research Council Grant ‘c-VEDA’ (Consortium on Vulnerability to Externalizing Disorders and Addictions) (MR/N000390/1), the Horizon 2020 funded ERC Advanced Grant ‘STRATIFY’ (695313).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D Liu, J Wang or Y Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Chang, S., Lu, Q. et al. A new locus regulating MICALL2 expression was identified for association with executive inhibition in children with attention deficit hyperactivity disorder. Mol Psychiatry 23, 1014–1020 (2018). https://doi.org/10.1038/mp.2017.74

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.74

This article is cited by

Search

Quick links