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A rare missense variant in RCL1 segregates with depression in
extended families
N Amin1,10, FMS de Vrij2,10, M Baghdadi2,10, RWW Brouwer3, JGJ van Rooij4, O Jovanova5, AG Uitterlinden4,5, A Hofman5,6,
HLA Janssen5,7,8, S Darwish Murad5,7, R Kraaij4,5, J Stedehouder2, MCGN van den Hout3, JM Kros9, WFJ van IJcken3, H Tiemeier2,5,
SA Kushner2,10 and CM van Duijn1,10

Depression is the most prevalent psychiatric disorder with a complex and elusive etiology that is moderately heritable.
Identification of genes would greatly facilitate the elucidation of the biological mechanisms underlying depression, however, its
complex etiology has proved to be a major bottleneck in the identification of its genetic risk factors, especially in genome-wide
association-like studies. In this study, we exploit the properties of a genetic isolate and its family-based structure to explore whether
relatively rare exonic variants influence the burden of depressive symptoms in families. Using a multistep approach involving
linkage and haplotype analyses followed by exome sequencing in the Erasmus Rucphen Family (ERF) study, we identified a rare
(minor allele frequency (MAF) = 1%) missense c.1114C4T mutation (rs115482041) in the RCL1 gene segregating with depression
across multiple generations. Rs115482041 showed significant association with depressive symptoms (N= 2393, βT-allele = 2.33,
P-value = 1× 10− 4) and explained 2.9% of the estimated genetic variance of depressive symptoms (22%) in ERF. Despite being twice
as rare (MAFo0.5%), c.1114C4T showed similar effect and significant association with depressive symptoms in samples from the
independent population-based Rotterdam study (N= 1604, βT-allele = 3.60, P-value = 3× 10− 2). A comparison of RCL1 expression in
human and mouse brain revealed a striking co-localization of RCL1 with the layer 1 interlaminar subclass of astrocytes found
exclusively in higher-order primates. Our findings identify RCL1 as a novel candidate gene for depression and offer insights into
mechanisms through which RCL1 may be relevant for depression.
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INTRODUCTION
Depression is a psychiatric illness that is moderately heritable
(h2 = 40–50%)1 and has a high prevalence (8.6–17.1%).2–4

Although all earlier genome-wide association studies (GWAS)
failed to identify genes underlying depression in European
populations,5–10 17 common genetic variants were recently
identified only after increasing the sample size to over 75 000
cases and 230 000 controls11 in the GWAS. All identified variants
are non-coding with modest effects on depression (odds
ratioo1.05) and together explain a small percentage of variation
in depression.11 Although expanding array-based GWAS further
may deliver more common genetic variants associated with
depression, the effects of these variants will be even smaller and
will have little or no impact on the familial risk of depression.12–14

The proportion of variance of depression risk explained by
common genetic variants was estimated at 21%,15,16 suggesting
that there is influence of additional mechanisms such as rare
genetic variants, which have not yet been as rigorously studied for
depression as the common genetic variants. We have recently
identified a rare missense variant in the LIPG17 gene and several
coding variants in NKPD118 gene associated with depressive
symptoms. The estimated impact of these variants on depressive

symptomology is large.17,18 In addition, two relatively small
studies have nominally implicated rare genetic variants in ZNF34
and Cav2-adaptor genes in depression.19,20 These studies
corroborate the contribution of rare variants to the etiology of
depression.
Next-generation sequencing (NGS) has greatly facilitated the

opportunity to study rare variation in the human genome.21

However, as statistical power in a genetic association study is
partly determined by the frequency of the genetic variant, large
sample sizes are required to have sufficient statistical power to
implicate rare variants with high confidence.22 As NGS is still
expensive, large-scale whole-genome/exome sequencing is not
yet feasible,21 which impedes the discovery of rare genetic
variants through GWAS-like studies. However, unlike common
variants (with a few exceptions), rare variants may also be studied
in small samples in family-based studies.21 As both alleles from the
parent are equally likely to be transmitted to the offspring, rare
alleles can be enriched in families and can be localized through
positional cloning.23–25 Further, individuals from a family are
likely to share the same phenotype and environmental factors26

besides genetics.
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Apart from family-based studies other designs including
extreme-phenotype sampling22 and use of population isolates
have been suggested to increase the chances of the discovery of
rare genetic variants21 in smaller samples. Although individuals
with extreme phenotypes are expected to be more homogenous
and enriched for rare variants with large effects,25 isolated
populations, besides being characterized by reduced phenotypic
and genotypic heterogeneity, are also enriched for rare alleles due
to isolation and genetic drift.27 For a complex and heterogeneous
trait like depression, these factors can help increase the power to
detect genetic variation that is rare in the general population.
There is, however, a risk with such designs that the identified
variants may not be relevant for the general population.21,22

In the current study, to identify rare genetic variants associated
with depression, we performed positional cloning using sparse
genotyping in individuals selected for a high burden of depressive
symptoms and clustered in families from an isolated population.
Next, we identified the relevant mutations using NGS in
informative individuals and families. We then replicated our
findings in a cosmopolitan population. Finally, to understand the
mechanisms through which the identified gene may be relevant
for depression, we performed gene expression analysis in human
and mice brain to localize the cell types in which the gene
harboring the identified mutation is expressed.

MATERIAL AND METHODS
Study populations
The discovery population consisted of subjects from the Erasmus Rucphen
Family (ERF), which is a genetically isolated community in the South-West
of the Netherlands, and studied as part of the Genetic Research in Isolated
Populations (GRIP) program.28 ERF includes ~ 3000 individuals who are
living descendants of 22 founder couples who each had at least six
children baptized in the community church. All data were collected
between 2002 and 2005. The population exhibits minimal immigration and
high inbreeding, resulting in a skewed distribution of rare allele
frequencies.28 Depressive symptoms were evaluated using the Center for
Epidemiologic Studies Depression (CES-D) and the Hospital Anxiety and
Depression Scale (HADS). The HADS is a 14-item scale of which 7 relate to
anxiety and 7 to depression. For depressive symptoms (HADS-D), the total
score ranges from 0 to 21 with a higher score representing a higher burden
of depressive symptoms. A cutoff of 11 has been validated as indicative of
a current major depressive episode.29,30

The replication cohort included subjects from the Rotterdam study (RS).
RS is a prospective, population-based study from the district of Ommoord
within the city of Rotterdam, designed to investigate the occurrence
and determinants of diseases in the elderly.31 The cohort was initially
defined in 1990 among 7983 persons who underwent a home interview
and extensive physical examination at baseline and follow-up examina-
tions occurring every 3–4 years (RS-I). The cohort was further extended in
2000 (RS-II) and 2005 (RS-III), establishing a total of 14 926 participants.31

RS is an outbred population, predominantly of Dutch origin. Participants
from RS-I were assessed during four follow-up visits for depressive
symptoms using the 20-item version of the CES-D scale. Data from the
third follow-up visit was used in this study to maximize the sample size.
This study was approved by the Medical Ethical Committee of the

Erasmus University Medical Center (Rotterdam, The Netherlands). All
participants provided written informed consent to participate.

Genotyping
Linkage array. Genotyping was performed on 6 K Illumina Linkage IV
Panels (Illumina, San Diego, CA, USA). After removing variants with a low
call rate (o98%) or diverging from Hardy–Weinberg equilibrium
(P-valueo10− 08), and removing individuals with a low call rate (o96%),
5250 single-nucleotide polymorphisms were retrieved from 3018 indivi-
duals. Mendelian inconsistencies were designated as missing.

Exome sequencing/genotyping. The exomes of 1336 individuals from the
ERF study were sequenced at the Center for Biomics (Department of Cell
Biology, Erasmus MC, Rotterdam, The Netherlands). Sequencing was
performed at a mean depth of 74x (Agilent Technologies, Santa Clara, CA,

USA, version 4 capture) on an Illumina Hiseq2000 sequencer using the
TruSeq Version 3 protocol. After quality control we retrieved 543 954 high-
quality single nucleotide variants (SNVs) in 1327 individuals. Individuals,
whose exomes were not sequenced (N=1527) were genotyped on the
Illumina Infinium HumanExome BeadChip, version 1.1. Calling was
performed with GenomeStudio. In RS, exomes of 2628 randomly selected
individuals from the RS-I population were sequenced at an average depth
of 54 × (Nimblegen SeqCap EZ V2 capture) on an Illumina Hiseq2000
sequencer using the TrueSeq Version 3 protocol. The final dataset after
quality control consisted of 600 806 SNVs among 2356 individuals, of
which 1604 had CES-D data available. Details of sequencing and
genotyping are provided in the supplement.

Statistical analyses
Linkage and haplotype analyses. To identify loci that might harbor large-
effect-rare variation, we performed an affected-only linkage analysis using
individuals from ERF scoring 490th percentile (score 412) of the HADS-D
distribution (N= 218; Supplementary Table 1). These 218 affected
individuals were related to each other in 410 generations in a large
multiplex pedigree consisting of 6562 individuals. PEDCUT software32 was
used to cluster the 218 affected individuals into 48 non-overlapping sub-
pedigrees to facilitate linkage analysis. Multipoint non-parametric and
parametric linkage analyses were performed using MERLIN 1.1.2.33

Parametric linkage analysis was performed assuming incomplete pene-
trance and no phenocopies under dominant (0, 0.5, 0.5) and recessive
models (0, 0, 0.5).34 Subsequently, to identify sub-families contributing to
each linkage peak (henceforth referred to as contributing families), a ‘per
family’ linkage analysis was performed for each locus of interest. To
identify individuals contributing to the linkage scores of each locus, we
constructed haplotypes using SIMWALK2.35 Linked regions for which we
could ascertain a distinct segregating haplotype were followed up with
fine mapping.

Identification of variants under the linkage peaks. Exome sequence data
was used to identify variants that could explain the observed linkage peaks
in the ERF discovery cohort. For each linkage region, we considered only
rare (minor allele frequency (MAF)o0.05) and coding (missense, stop-
coding) SNVs located within the corresponding haplotypes. To identify
variants that could explain the corresponding linkage signal, we searched
for variants shared by at least two affected haplotype carriers. Candidate
variants were subjected to quantitative trait association analysis with
depressive symptoms adjusted for age and gender using the ‘fastAssoc’
option in MERLIN 1.1.2. In RS, the replication cohort, quantitative trait
association analysis of depressive symptoms (CES-D-scale) adjusted for age
and gender was performed using seqMeta (v1.4) (http://cran.r-project.org/
web/packages/seqMeta/index.html).

Human brain material
All procedures with human tissue were performed with the approval of the
Medical Ethical Committee of the Erasmus MC Rotterdam, including
written consent of all subjects for brain donation in accordance with Dutch
license procedures and the Declaration of Helsinki. Fresh-frozen post-
mortem tissue blocks containing the middle frontal gyrus (BA9) from three
donors were obtained from the Erasmus MC Department of Pathology
(Supplementary Table 2). Donors were confirmed to have no past medical
history of any known psychiatric or neurologic illness, with additional
confirmation of the absence of clinical neuropathology by autopsy
examination.

Human brain immunohistochemistry
Middle frontal gyrus tissue blocks were postfixed for 7 days in 4%
paraformaldehyde (0.1 M phosphate buffer, pH 7.3) at 4 °C. Tissue was
subsequently transferred to 10% sucrose (0.1 M phosphate buffer, pH 7.3)
and stored overnight at 4 °C. Embedding was performed in 12% gelatin/
10% sucrose, with fixation in 10% paraformaldehyde/30% sucrose solution
for 4 h at room temperature and overnight immersion in 30% sucrose at
4 °C. Serial 40 μm sections were collected along the rostrocaudal axis using
a freezing microtome (Leica, Wetzlar, Germany; SM 2000 R) and stored at
− 20 °C in a solution containing 37.5% ethylene glycol (Avantor, Central
Valley, PA, USA, 9300), 37.5% glycerol (VWR Chemicals, Radnor, PA, USA,
24 386.298) and 25% 0.1 M phosphate buffer. Free-floating sections were
washed thoroughly with PBS before being incubated in sodium citrate (10 mM)
at 80 °C for 45 min and rinsed with PBS. Sections were pre-incubated with
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a blocking PBS buffer containing 1% Triton X-100 and 5% bovine serum
albumin for 1 h at room temperature.
Primary antibody labeling was performed in PBS buffer containing 1%

Triton X-100 and 1% BSA for 72 h at 4 °C. The following primary antibodies
were used: Rabbit anti-RCL1 (1:250, Sigma, St Louis, MO, USA,
SAB4500053), Mouse anti-GFAP (1:2000, Sigma, G6171), Mouse anti-
MAP2 (1:200, EMD Millipore, Merck Life Sciences, Darmstadt, Germany,
MAB3418), Guinea pig anti-MAP2 (1:1000, Synaptic Systems, Goettingen,
Germany, 188 004), Mouse anti-SMI31 (1:250, Affinity, Exeter, UK, NA1219),
Rat anti-CD44 (1:400, Sigma, SAB4700188). Following primary antibody
labeling, sections were washed with PBS and then incubated with
corresponding Alexa-conjugated secondary antibodies and cyanine dyes
(1:400, Braunschweig Chemicals, Amsterdam, The Netherlands) in PBS
buffer containing 1% Triton X-100, 1% BSA for 4 h at room temperature.
Nuclear staining was performed using DAPI (1:10 000, Thermo Fisher
Scientific, Waltham, MA, USA). Images were acquired using a Zeiss LSM 700
confocal microscope (Carl Zeiss, Oberkochen, Germany).

Mouse brain immunohistochemistry
All mouse experiments were approved by the local animal welfare
committee. Three adult C57BL/6J mice were killed by standard transcardiac
perfusion with saline followed by 4% paraformaldehyde. Brains were
dissected and postfixed in 4% paraformaldehyde for 2 h at room
temperature. Subsequently, 40 μm mouse brain sections were prepared
and stained with the same procedures as the human brain sections, with
the exceptions that they were: (a) not incubated in sodium citrate, (b)
incubated in 0.5% Triton X-100 instead of 1%, (c) blocked with horse serum
(Invitrogen) instead of BSA and (d) Mouse anti-GFAP (Sigma, G6171) was
used in a 1:20 000 dilution.

RESULTS
Linkage and haplotyping
Results of genome-wide linkage analysis are provided in
Supplementary Figure 1. There were 10 genomic regions including
5q14, 9p22-24, 10q21, 11q13, 12q24, 15q21, 19q13, 20p13, 21q22
and 21q24 that showed a log of odds score 43 (Table 1).
Chromosome 9p22-24 showed over 11 mega-bases (Mb) long
haplotype segregating in three generations of the contributing
family. The haplotype was shared by all of the affected individuals
(N= 8) in this family (Supplementary Figure 2) including two
homozygous carriers. For linked regions including chromosomes
15q21, 19q13, 20p13 and 21q22, we observed small (o190 kilo-
base (kb)) haplotypes with mixed segregation patterns (Suppl-
ementary Figures 3–6). For chromosomes 5q14, 10q21 and 11q13
we could not identify clear segregating haplotypes.

Fine mapping using exome sequencing
Upon filtering the exome sequence data based on sharing among
affected haplotype carriers, we identified a rare c.1114C4T
missense variant (rs115482041) in 6 of the 8 affected haplotype
carriers in the 9p22-24 region in the RCL1 gene (Supplementary

Table 3; Supplementary Figure 7). Within the remaining linkage
regions, including 15q21, 19q13, 20p13 and 21q22, we searched
for shared variants in heterozygous, homozygous and compound
heterozygous forms but identified none that could explain linkage
signals in these regions. Rs115482041 was sequenced with a high
confidence (read depth = 39 × ) and showed a base call accuracy
of 499.99% (Phred scale quality = 94). The two homozygous
carriers of the haplotype (brothers) were also homozygous for
rs115482041-T (Supplementary Figure 7). These two siblings were
diagnosed with major depressive disorder (MDD), whereas their
sister and her son, who were heterozygous for the rare variant,
were both diagnosed with depressive disorder not otherwise
specified. The MAF of rs115482041 was 1% in the ERF study
compared to 0.16% in 1000 Genomes (http://www.1000genomes.
org/) and 0.33% in the Exome Sequencing Project (ESP; http://evs.
gs.washington.edu/EVS/). Rs115482041 is a conserved protein
coding variant (genomic evolutionary rate profiling = 4.0) and
predicted to affect protein function (p.L186F) by three different
algorithms (PolyPhen2, 0.68; SIFT, 0.01; MutationTaster, 0.99;
combined annotation dependent depletion score, 12.15).
As ERF is a large pedigree spread over 23 generations, we

extended this sub-family to more distant relatives to identify other
potential carriers to confirm the segregation of rs115482041
(Supplementary Figure 8). We performed Sanger sequencing of 30
individuals with available HADS-D score from the extended family
including two haplotype carriers that did not carry the
rs115482041_T variant based on NGS. We identified three more
heterozygous carriers of rs115482041_T, two of whom had a high
HADS depression score (Supplementary Figure 8). In total, there
were 54/2816 rs115482041_T carriers who were related to each
other across five generations (Figure 1). No Mendelian incon-
sistencies were observed. A significant association of rs115482041
with the HADS-D was observed (N= 2393, log of odds = 3.24,
P-value = 1x10− 4). The effect of the rare allele (T) on HADS-D was
large (β= 2.33), indicating a mean increase of 2.33 points for each
mutant allele (T) (2.33 points for heterozygote C/T carriers and 4.66
points for homozygous T/T carriers, compared with the reference
C/C carriers). The heritability of the HADS-D in the extended sub-
pedigree (Supplementary Figure 8) was estimated to be 94%, and
54% of the variance in depressive symptoms was explained by
c.1114C4T. Across the entire ERF cohort, the heritability of the
HADS-D was estimated to be 22%, of which rs115482041 explained
0.64% of the variance in depressive symptoms (2.9% of the genetic
variance of HADS-D). We found no evidence to suggest that this
association was due to an underlying somatic condition, including
cancer, cardiovascular, lung, liver or metabolic phenotypes.
For 17 of the 54 carriers, we were able to obtain medication

prescriptions at the time of the HADS assessments. Six were using
antidepressant medication and/or benzodiazepines at the time of
assessment including selective serotonin reuptake inhibitors
(paroxetine, citalopram), non-selective serotonin reuptake

Table 1. All regions with a (heterogeneity) log of odds 43

chr Start snp End snp From-bp (hg19) To-bp (hg19) Dominant (HLOD) Recessive (HLOD) NPL (LOD)

5q14 rs4704223 rs173686 74773420 82811500 2.18 3.20 2.33
9p22-24 rs7851353 rs1888952 4411383 16258118 3.71 2.52 3.44
10q21 rs1338799 rs377859 57629679 64516065 2.30 3.45 2.90
11q13 rs1530354 rs7122786 60200446 69029210 2.55 3.15 2.78
12q24.3 rs1545610 rs7960480 132175484 133778166 4.33 5.78 4.67
15q21 rs347117 rs610877 59000957 59103328 3.56 4.91 5.17
19q13.4 rs260462 rs3499 58774071 59093484 3.64 5.31 5.16
20p13 rs1434789 rs434609 137900 236992 3.94 5.02 4.64
21q22 rs1012959 rs2836301 38061622 39677589 5.03 6.84 7.32
21q24 rs2968 rs2839377 47608580 48077812 4.80 4.91 4.83

Abbreviations: HLOD, heterogeneity log of odds; LOD, log of odds.
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Figure 1. All carriers of c.1114C4T in the Erasmus Rucphen Family (ERF) study. Males are depicted with squares and females with circles. The
text below each individual shows his/her age followed by the score on HADS-D scale, genotype and psychiatric diagnosis (mdd refers to major
depressive disorder/lifetime depression and mild refers to depression not otherwise specified), if any. Individuals connected with dotted lines
are duplicates. Dots indicate missing values. HADS, Hospital Anxiety Depression Scale.
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Figure 2. Immunohistochemical labeling of RCL1 in human cerebral cortex. (a) Overview of RCL1 labeling showing co-localization with long
(4350 μm) tortuous interlaminar GFAP-positive extensions (the dashed line marks the approximate border between cortical layers I and II,
scale bar= 50 μm). (b) Higher magnification of marked region in a (scale bar= 12 μm).
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inhibitors (imipramine, amitriptyline) and other antidepressants
(mirtazapine) coupled with benzodiazepine derivatives (temaze-
pam, oxazepam, alprazolam and bromazepam).
In the replication cohort, we identified 23 rs115482041_T

carriers (of whom 17 had completed the CES-D) from a total of
2356 individuals (MAF= 0.5%). The rs115482041 variant was
sequenced at an average depth of 39 × and showed a base call
accuracy of 499.99% (Phred scale quality = 70). A significant
association with CES-D was observed (P-value = 0.03). The effect of
rs115482041_T on the CES-D scale was large in RS (β= 3.60,
δβ= 1.69), which was comparable to that in ERF (CES-D; β= 3.47,
δβ= 1.74).

RCL1 is abundantly expressed in interlaminar astrocytes in human
cerebral cortex
RCL1 is an RNA 3′-terminal phosphate cyclase-like protein that is
highly conserved across eukaryotic species.36 The function of the
RCL1 protein has predominantly been studied in yeast, where it is
has been shown to have nuclease activity that separates 18 S
transcripts from the precursor rRNA transcript by co-
transcriptional endonucleolytic cleavage. In line with this function,
RCL1 has been shown in yeast to have a nucleolar subcellular
localization.37

No previous study has investigated the cell-type specific
expression of RCL1 in human brain. Immunohistochemistry of
human postmortem cerebral cortex revealed nuclear labeling of
RCL1 in most cells (Supplementary Figure 9a), including neurons
(Supplementary Figure 9b). In addition, a distinct pattern of long
unbranched tortuous processes often extending from layer 1 to
layer 3/4 exhibited abundant RCL1 expression (Figure 2). These
processes showed no co-localization with markers of neuronal
processes including MAP2 (dendritic, Supplementary Figure 10a)
or SMI31 (axonal, Supplementary Figure 10b). In contrast, strong
co-localization was observed with the astrocyte markers GFAP and
CD44 (Figure 2; Supplementary Figure 11) with their cell bodies
located in layer 1 of the cortex and a cellular morphology
consistent with primate-specific interlaminar astrocytes that
extend very long tortuous processes often extending more than
a millimeter in length into cortical layers 2–4.38 The specificity of
RCL1 expression in layer 1 interlaminar astrocytes was additionally
highlighted by the absence of cytoplasmic RCL1 labeling in GFAP+

astrocytes in layer 5/6 of the cerebral cortex (Supplementary
Figure 12). Moreover, consistent with the recent evolution of
interlaminar astrocytes limited to primates, we observed no
significant cytoplasmic RCL1 labeling in GFAP+ astrocytes of the
mouse cerebral cortex (Supplementary Figure 13). Immunohisto-
chemistry controls for RCL1 labeling, autofluorescence and
nonspecific secondary antibody labeling are presented in
Supplementary Figures 14 and 15.

DISCUSSION
Using a three-stage design in a family-based setting to discover
rare genetic variants influencing depression, we identified a rare
genetic variant (rs115482041) on chromosome 9p24 in the RCL1
gene that segregated with depression across multiple generations
in an extended family. The variant was estimated to explain more
than half of the variation in depressive symptoms in the extended
family, and 2.9% of the heritability in the overall genetically
isolated ERF population, which is enriched for rs115482041. The
strong association with depressive symptoms was further
replicated in the population-based RS cohort.
Rs115482041 is a coding variant (c.1114C4T, p.L186F) located

in a highly conserved RNA Terminal Phosphate Cyclase-Like 1
domain and predicted as damaging. The variant exists only in
8/5008 alleles (MAF= 0.16%) in 1000 Genomes and 43/12963
alleles (MAF= 0.33%) in the Exome Variant Server. It occurs more

frequently in European-Americans (37/8563, MAF= 0.43%) com-
pared with the African-Americans (6/4400, MAF = 0.14%). In
contrast, the ERF pedigree is considerably enriched for
rs115482041 carriers (56/5632 alleles, MAF= 1%). As a conse-
quence, we had considerably increased power to detect the
association with depression. Further, of interest is that both of
the homozygous carriers from ERF exhibited high scores on the
depressive symptom rating scales and were also diagnosed with
MDD requiring a combination of psychotherapy and antidepres-
sant treatment. The association of rs115482041 with depressive
symptoms in the population-based Rotterdam Study further
confirms the robustness of the finding and its relevance beyond
the ERF cohort. We could not find our variant in the top 10 000
findings in the GWAS performed by 23andMe.11 As the variant
rs115482041 is extremely rare in 1000 Genomes, it is very likely
that the variant may not have been analyzed because of poor
imputation quality39 (in ERF the imputation quality of rs115482041
based on the same release of 1000 Genomes is 0.09).
RCL1 is ubiquitously expressed in eukaryotes with a demon-

strated function in ribosome biogenesis. Our findings now suggest
that RCL1 might have additional functions in the human brain. In
contrast to the mouse brain, immunohistochemistry of RCL1
expression in human brain identified abundant labeling of
interlaminar astrocytes in layer 1 of the cerebral cortex, with their
characteristic tortuous processes extending long distances of
hundreds of microns into deeper cortical layers. Notably, recent
studies in rodent models40,41 and humans42–44 have proposed
novel pathophysiological functions of astrocytes in MDD. How-
ever, the neurobiological function of interlaminar astrocytes
remains largely unknown. Interestingly, their extensive projections
have been hypothesized to form a network for long-range
coordination of intra-cortical communication.38,45–47 On the other
hand, we also found evidence for the presence of RCL1 in neurons
for which we cannot yet distinguish the relative contribution of
neuronal and/or astrocyte dysfunction that might explain the
genetic association with RCL1 c.1114C4T (p.L186F). Future studies
should be performed to elucidate the function of interlaminar
astrocytes and their potential influence on the pathophysiology of
depression.
In this study we used a unique multistep approach to identify

rare genetic variants that confer large effects on depression. Our
study design had several advantages. First, the discovery cohort
ERF was enriched for the rs115482041_T variant, which led to an
increase in statistical power to detect genotype/phenotype
association. Secondly, using haplotype analysis we were able to
identify the most relevant individuals for each locus that facilitated
the identification of segregating candidate variants using the
filtering/sharing approach. Finally, by combining linkage, haplo-
type sharing and filtering, we contained the problem of multiple
testing. Importantly however, despite these distinct advantages
we were able to identify a genetic variant for only one of the
several linked genomic regions, for which, there may be several
reasons including structural variants, and intronic or intergenic
single-nucleotide variants that were not evaluated in the current
study. Notably, many of the other haplotype regions were
relatively small (a few kb) and therefore of questionable relevance,
compared with that of the 9p22-24 locus which was nearly 11 Mb.
As ERF is a young genetic isolate with high rate of consanguinity,
500 kb–1.5 Mb homozygous blocks may just be shared by
chance.48 Notably, however, we previously found that some of
these additional loci are significantly linked with personality traits,
including conscientiousness (20p13), extraversion (12q24), open-
ness (12q24 and 19q13), neuroticism (19q13 and 21q22-24) and
agreeableness (21q22).49

In summary, our findings identify RCL1 as an important
candidate gene for depression in a region that shows genome-
wide significant linkage with depressive symptoms in the general
population. We show that the RCL1 protein is present in human
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brain, including neurons and astrocytes. Further research is
needed to elucidate the mechanism of RCL1 in the pathogenesis
of depression.
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