Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Genetic evidence for role of integration of fast and slow neurotransmission in schizophrenia

Abstract

The most recent genome-wide association studies (GWAS) of schizophrenia (SCZ) identified hundreds of risk variants potentially implicated in the disease. Further, novel statistical methodology designed for polygenic architecture revealed more potential risk variants. This can provide a link between individual genetic factors and the mechanistic underpinnings of SCZ. Intriguingly, a large number of genes coding for ionotropic and metabotropic receptors for various neurotransmitters—glutamate, γ-aminobutyric acid (GABA), dopamine, serotonin, acetylcholine and opioids—and numerous ion channels were associated with SCZ. Here, we review these findings from the standpoint of classical neurobiological knowledge of neuronal synaptic transmission and regulation of electrical excitability. We show that a substantial proportion of the identified genes are involved in intracellular cascades known to integrate ‘slow’ (G-protein-coupled receptors) and ‘fast’ (ionotropic receptors) neurotransmission converging on the protein DARPP-32. Inspection of the Human Brain Transcriptome Project database confirms that that these genes are indeed expressed in the brain, with the expression profile following specific developmental trajectories, underscoring their relevance to brain organization and function. These findings extend the existing pathophysiology hypothesis by suggesting a unifying role of dysregulation in neuronal excitability and synaptic integration in SCZ. This emergent model supports the concept of SCZ as an ‘associative’ disorder—a breakdown in the communication across different slow and fast neurotransmitter systems through intracellular signaling pathways—and may unify a number of currently competing hypotheses of SCZ pathophysiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Cardno AG, Marshall EJ, Coid B, Macdonald AM, Ribchester TR, Davies NJ et al. Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry 1999; 56: 162–168.

    Article  CAS  PubMed  Google Scholar 

  2. Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45: 1150–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sullivan PF . The psychiatric GWAS consortium: big science comes to psychiatry. Neuron 2010; 68: 182–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cross-Disorder Group of the Psychiatric Genomics C. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 2013; 381: 1371–1379.

    Article  CAS  Google Scholar 

  5. Schizophrenia Psychiatric Genome-Wide Association Study C. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43: 969–976.

    Article  CAS  Google Scholar 

  6. Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.

    Article  CAS  Google Scholar 

  7. Schork AJ, Thompson WK, Pham P, Torkamani A, Roddey JC, Sullivan PF et al. All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs. PLoS Genet 2013; 9: e1003449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Y, Thompson WK, Schork AJ, Holland D, Chen CH, Bettella F et al. Leveraging genomic annotations and pleiotropic enrichment for improved replication rates in schizophrenia GWAS. PLoS Genet 2016; 12: e1005803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Os J, Kapur S . Schizophrenia. Lancet 2009; 374: 635–645.

    Article  CAS  PubMed  Google Scholar 

  10. Moghaddam B, Javitt D . From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 2012; 37: 4–15.

    Article  CAS  PubMed  Google Scholar 

  11. Nakazawa K, Zsiros V, Jiang Z, Nakao K, Kolata S, Zhang S et al. GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 2012; 62: 1574–1583.

    Article  CAS  PubMed  Google Scholar 

  12. Berridge MJ . Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia. Cell Tissue Res 2014; 357: 477–492.

    Article  CAS  PubMed  Google Scholar 

  13. Lidow MS . Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain Res Brain Res Rev 2003; 43: 70–84.

    Article  CAS  PubMed  Google Scholar 

  14. Moises HW, Zoega T, Gottesman II . The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia. BMC Psychiatry 2002; 2: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Berridge MJ . Calcium signalling remodelling and disease. Biochem Soc Trans 2012; 40: 297–309.

    Article  CAS  PubMed  Google Scholar 

  16. Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P . DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 2004; 44: 269–296.

    Article  CAS  PubMed  Google Scholar 

  17. Beaulieu JM, Gainetdinov RR . The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63: 182–217.

    Article  CAS  PubMed  Google Scholar 

  18. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M et al. Spatio-temporal transcriptome of the human brain. Nature 2011; 478: 483–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Network, Pathway Analysis Subgroup of Psychiatric Genomics C. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci 2015; 18: 199–209.

    Article  CAS  Google Scholar 

  20. Pocklington AJ, Rees E, Walters JT, Han J, Kavanagh DH, Chambert KD et al. Novel findings from CNVs implicate inhibitory and excitatory signaling complexes in schizophrenia. Neuron 2015; 86: 1203–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014; 506: 185–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014; 506: 179–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Insel TR . Rethinking schizophrenia. Nature 2010; 468: 187–193.

    Article  CAS  PubMed  Google Scholar 

  24. McCarroll SA, Hyman SE . Progress in the genetics of polygenic brain disorders: significant new challenges for neurobiology. Neuron 2013; 80: 578–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Walaas SI, Aswad DW, Greengard P . A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature 1983; 301: 69–71.

    Article  CAS  PubMed  Google Scholar 

  26. Greengard P . The neurobiology of slow synaptic transmission. Science 2001; 294: 1024–1030.

    Article  CAS  PubMed  Google Scholar 

  27. Berridge MJ, Bootman MD, Roderick HL . Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003; 4: 517–529.

    Article  CAS  PubMed  Google Scholar 

  28. Zamponi GW, Currie KP . Regulation of Ca(V)2 calcium channels by G protein coupled receptors. Biochim Biophys Acta 2013; 1828: 1629–1643.

    Article  CAS  PubMed  Google Scholar 

  29. Mothet JP, Parent AT, Wolosker H, Brady RO Jr., Linden DJ, Ferris CD et al. d-Serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 2000; 97: 4926–4931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Buraei Z, Yang J . Structure and function of the beta subunit of voltage-gated Ca(2)(+) channels. Biochim Biophys Acta 2013; 1828: 1530–1540.

    Article  CAS  PubMed  Google Scholar 

  31. Brennand KJ, Landek-Salgado MA, Sawa A . Modeling heterogeneous patients with a clinical diagnosis of schizophrenia with induced pluripotent stem cells. Biol Psychiatry 2014; 75: 936–944.

    Article  PubMed  Google Scholar 

  32. Kantrowitz JT, Javitt DC . N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull 2010; 83: 108–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lips ES, Cornelisse LN, Toonen RF, Min JL, Hultman CM et al, International Schizophrenia C. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Mol Psychiatry 2012; 17: 996–1006.

    Article  CAS  PubMed  Google Scholar 

  34. Torkamani A, Topol EJ, Schork NJ . Pathway analysis of seven common diseases assessed by genome-wide association. Genomics 2008; 92: 265–272.

    Article  CAS  PubMed  Google Scholar 

  35. Holmans P, Green EK, Pahwa JS, Ferreira MA, Purcell SM, Sklar P et al. Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder. Am J Hum Genet 2009; 85: 13–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW . Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet 2013; 14: 483–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cotsapas C, Voight BF, Rossin E, Lage K, Neale BM, Wallace C et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet 2011; 7: e1002254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wagner GP, Zhang J . The pleiotropic structure of the genotype-phenotype map: the evolvability of complex organisms. Nat Rev Genet 2011; 12: 204–213.

    Article  CAS  PubMed  Google Scholar 

  39. Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zgaga L, Manolio T et al. Abundant pleiotropy in human complex diseases and traits. Am J Hum Genet 2011; 89: 607–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mirnics K, Middleton FA, Lewis DA, Levitt P . Delineating novel signature patterns of altered gene expression in schizophrenia using gene microarrays. Scientific World J 2001; 1: 114–116.

    Article  CAS  Google Scholar 

  41. Mirnics K, Middleton FA, Lewis DA, Levitt P . The human genome: gene expression profiling and schizophrenia. Am J Psychiatry 2001; 158: 1384.

    Article  CAS  PubMed  Google Scholar 

  42. Mirnics K, Middleton FA, Lewis DA, Levitt P . Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 2001; 24: 479–486.

    Article  CAS  PubMed  Google Scholar 

  43. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67.

    Article  CAS  PubMed  Google Scholar 

  44. Vawter MP, Barrett T, Cheadle C, Sokolov BP, Wood WH III, Donovan DM et al. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res Bull 2001; 55: 641–650.

    Article  CAS  PubMed  Google Scholar 

  45. Thomas EA . Molecular profiling of antipsychotic drug function: convergent mechanisms in the pathology and treatment of psychiatric disorders. Mol Neurobiol 2006; 34: 109–128.

    Article  CAS  PubMed  Google Scholar 

  46. Valjent E, Bertran-Gonzalez J, Bowling H, Lopez S, Santini E, Matamales M et al. Haloperidol regulates the state of phosphorylation of ribosomal protein S6 via activation of PKA and phosphorylation of DARPP-32. Neuropsychopharmacology 2011; 36: 2561–2570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Larkum M . A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci 2013; 36: 141–151.

    Article  CAS  PubMed  Google Scholar 

  48. Marenco S, Weinberger DR . The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopathol 2000; 12: 501–527.

    Article  CAS  PubMed  Google Scholar 

  49. Spitzer NC . Electrical activity in early neuronal development. Nature 2006; 444: 707–712.

    Article  CAS  PubMed  Google Scholar 

  50. Rinaldi T, Kulangara K, Antoniello K, Markram H . Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc Natl Acad Sci USA 2007; 104: 13501–13506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rinaldi T, Silberberg G, Markram H . Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid. Cereb Cortex 2008; 18: 763–770.

    Article  PubMed  Google Scholar 

  52. Markram H, Rinaldi T, Markram K . The intense world syndrome—an alternative hypothesis for autism. Front Neurosci 2007; 1: 77–96.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Adams RA, Stephan KE, Brown HR, Frith CD, Friston KJ . The computational anatomy of psychosis. Front Psychiatry/Front Res Found 2013; 4: 47.

    Google Scholar 

  54. Brandon NJ, Sawa A . Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci 2011; 12: 707–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Visscher PM, Brown MA, McCarthy MI, Yang J . Five years of GWAS discovery. Am J Hum Genet 2012; 90: 7–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gaj T, Sirk SJ, Shui SL, Liu J . Genome-editing technologies: principles and applications. Cold Spring Harb Perspect Biol 2016; 8: pii: a023754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kramer RH, Mourot A, Adesnik H . Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci 2013; 16: 816–823.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Spangler SM, Bruchas MR . Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. Curr Opin Pharmacol 2016; 32: 56–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roth BL . DREADDs for neuroscientists. Neuron 2016; 89: 683–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tenner B, Mehta S, Zhang J . Optical sensors to gain mechanistic insights into signaling assemblies. Curr Opin Struct Biol 2016; 41: 203–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Devor A, Bandettini PA, Boas DA, Bower JM, Buxton RB, Cohen LB et al. The challenge of connecting the dots in the B.R.A.I.N. Neuron 2013; 80: 270–274.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang H, Reichert E, Cohen AE . Optical electrophysiology for probing function and pharmacology of voltage-gated ion channels. Elife 2016; 5: e15202.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mariani J, Simonini MV, Palejev D, Tomasini L, Coppola G, Szekely AM et al. Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci USA 2012; 109: 12770–12775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pasca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 2015; 12: 671–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Espuny-Camacho I, Michelsen KA, Gall D, Linaro D, Hasche A, Bonnefont J et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 2013; 77: 440–456.

    Article  CAS  PubMed  Google Scholar 

  66. Robertson HR, Feng G . Annual Research Review: transgenic mouse models of childhood-onset psychiatric disorders. J Child Psychol Psychiatry 2011; 52: 442–475.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Geyer MA, Olivier B, Joels M, Kahn RS . From antipsychotic to anti-schizophrenia drugs: role of animal models. Trends Pharmacol Sci 2012; 33: 515–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Porteous DJ, Millar JK, Brandon NJ, Sawa A . DISC1 at 10: connecting psychiatric genetics and neuroscience. Trends Mol Med 2011; 17: 699–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F et al. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 2007; 54: 387–402.

    Article  CAS  PubMed  Google Scholar 

  70. Wang XJ, Krystal JH . Computational psychiatry. Neuron 2014; 84: 638–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Maki-Marttunen T, Halnes G, Devor A, Witoelar A, Bettella F, Djurovic S et al. Functional effects of schizophrenia-linked genetic variants on intrinsic single-neuron excitability: a modeling study. Biol Psychiatry Cogn Neurosci Neuroimag 2016; 1: 49–59.

    Google Scholar 

  72. Hill SL, Wang Y, Riachi I, Schurmann F, Markram H . Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits. Proc Natl Acad Sci USA 2012; 109: E2885–E2894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA et al. Reconstruction and simulation of neocortical microcircuitry. Cell 2015; 163: 456–492.

    Article  CAS  PubMed  Google Scholar 

  74. Reimann MW, Anastassiou CA, Perin R, Hill SL, Markram H, Koch C . A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 2013; 79: 375–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hagen E, Dahmen D, Stavrinou ML, Linden H, Tetzlaff T, van Albada SJ et al. Hybrid scheme for modeling local field potentials from point-neuron networks. Cereb Cortex 2016; 26: 4461–4496.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Swerdlow NR, Braff DL, Geyer MA . Sensorimotor gating of the startle reflex: what we said 25 years ago, what has happened since then, and what comes next. J Psychopharmacol 2016; 30: 1072–1081.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Schork AJ, Wang Y, Thompson WK, Dale AM, Andreassen OA . New statistical approaches exploit the polygenic architecture of schizophrenia—implications for the underlying neurobiology. Curr Opin Neurobiol 2016; 36: 89–98.

    Article  CAS  PubMed  Google Scholar 

  78. Andreassen OA, Thompson WK, Schork AJ, Ripke S, Mattingsdal M, Kelsoe JR et al. Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet 2013; 9: e1003455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Le Hellard S, Wang Y, Witoelar A, Zuber V, Bettella F, Hugdahl K et al. Identification of gene loci that overlap between schizophrenia and educational attainment. Schizophr Bull 2016: pii: sbw085 (e-pub ahead of print).

  80. Desikan RS, Schork AJ, Wang Y, Witoelar A, Sharma M, McEvoy LK et al. Genetic overlap between Alzheimer's disease and Parkinson's disease at the MAPT locus. Mol Psychiatry 2015; 20: 1588–1595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Andreassen OA, Harbo HF, Wang Y, Thompson WK, Schork AJ, Mattingsdal M et al. Genetic pleiotropy between multiple sclerosis and schizophrenia but not bipolar disorder: differential involvement of immune-related gene loci. Mol Psychiatry 2015; 20: 207–214.

    Article  CAS  PubMed  Google Scholar 

  82. LeBlanc M, Zuber V, Andreassen BK, Witoelar A, Zeng L, Bettella F et al. Identifying novel gene variants in coronary artery disease and shared genes with several cardiovascular risk factors. Circulation research 2016; 118: 83–94.

    Article  CAS  PubMed  Google Scholar 

  83. Andreassen OA, Zuber V, Thompson WK, Schork AJ, Bettella F et alConsortium P. Shared common variants in prostate cancer and blood lipids. Int J Epidemiol 2014; 43: 1205–1214.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Andreassen OA, Djurovic S, Thompson WK, Schork AJ, Kendler KS, O'Donovan MC et al. Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. Am J Hum Genet 2013; 92: 197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the NIH (NS057198, EB00790, R01MH111359), the Research Council of Norway (229129, 213837, 223273), the South-East Norway Regional Health Authority (2017-112, 2016-064) and KG Jebsen Stiftelsen (SKGJ-MED‐008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O A Andreassen or A M Dale.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devor, A., Andreassen, O., Wang, Y. et al. Genetic evidence for role of integration of fast and slow neurotransmission in schizophrenia. Mol Psychiatry 22, 792–801 (2017). https://doi.org/10.1038/mp.2017.33

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.33

This article is cited by

Search

Quick links