Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Neural mechanisms of mismatch negativity dysfunction in schizophrenia

Abstract

Schizophrenia is associated with cognitive deficits that reflect impaired cortical information processing. Mismatch negativity (MMN) indexes pre-attentive information processing dysfunction at the level of primary auditory cortex. This study investigates mechanisms underlying MMN impairments in schizophrenia using event-related potential, event-related spectral decomposition (ERSP) and resting state functional connectivity (rsfcMRI) approaches. For this study, MMN data to frequency, intensity and duration-deviants were analyzed from 69 schizophrenia patients and 38 healthy controls. rsfcMRI was obtained from a subsample of 38 patients and 23 controls. As expected, schizophrenia patients showed highly significant, large effect size (P=0.0004, d=1.0) deficits in MMN generation across deviant types. In ERSP analyses, responses to deviants occurred primarily the theta (4–7 Hz) frequency range consistent with distributed corticocortical processing, whereas responses to standards occurred primarily in alpha (8–12 Hz) range consistent with known frequencies of thalamocortical activation. Independent deficits in schizophrenia were observed in both the theta response to deviants (P=0.021) and the alpha-response to standards (P=0.003). At the single-trial level, differential patterns of response were observed for frequency vs duration/intensity deviants, along with At the network level, MMN deficits engaged canonical somatomotor, ventral attention and default networks, with a differential pattern of engagement across deviant types (P<0.0001). Findings indicate that deficits in thalamocortical, as well as corticocortical, connectivity contribute to auditory dysfunction in schizophrenia. In addition, differences in ERSP and rsfcMRI profiles across deviant types suggest potential differential engagement of underlying generator mechanisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Javitt DC . When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. Annu Rev Clin Psychol 2009; 5: 249–275.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Javitt DC, Freedman R . Sensory processing dysfunction in the personal experience and neuronal machinery of schizophrenia. Am J Psychiatry 2015; 172: 17–31.

    Article  PubMed  Google Scholar 

  3. Javitt DC . Intracortical mechanisms of mismatch negativity dysfunction in schizophrenia. Audiol Neurootol 2000; 5: 207–215.

    Article  CAS  PubMed  Google Scholar 

  4. Hay RA, Roach BJ, Srihari VH, Woods SW, Ford JM, Mathalon DH . Equivalent mismatch negativity deficits across deviant types in early illness schizophrenia-spectrum patients. Biol Psychol 2015; 105: 130–137.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Light GA, Naatanen R . Mismatch negativity is a breakthrough biomarker for understanding and treating psychotic disorders. Proc Natl Acad Sci USA 2013; 110: 15175–15176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Javitt DC, Sweet RA . Auditory dysfunction in schizophrenia: integrating clinical and basic features. Nat Rev Neurosci 2015; 16: 535–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Naatanen R, Sussman ES, Salisbury D, Shafer VL . Mismatch negativity (MMN) as an index of cognitive dysfunction. Brain Topogr 2014; 27: 451–466.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Friedman T, Sehatpour P, Dias E, Perrin M, Javitt DC . Differential relationships of mismatch negativity and visual p1 deficits to premorbid characteristics and functional outcome in schizophrenia. Biol Psychiatry 2012; 71: 521–529.

    Article  PubMed  Google Scholar 

  9. Salisbury DF, Polizzotto NR, Nestor PG, Haigh SM, Koehler J, McCarley RW . Pitch and Duration Mismatch Negativity and Premorbid Intellect in the First Hospitalized Schizophrenia Spectrum. Schizophr Bull 2016; doi:10.1093/schbul/sbw074; e-pub ahead of print.

  10. Carrion RE, Cornblatt BA, McLaughlin D, Chang J, Auther AM, Olsen RH et al. Contributions of early cortical processing and reading ability to functional status in individuals at clinical high risk for psychosis. Schizophr Res 2015; 164: 1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Perez VB, Woods SW, Roach BJ, Ford JM, McGlashan TH, Srihari VH et al. Automatic auditory processing deficits in schizophrenia and clinical high-risk patients: forecasting psychosis risk with mismatch negativity. Biol Psychiatry 2014; 75: 459–469.

    Article  PubMed  Google Scholar 

  12. Javitt DC, Zukin SR . Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991; 148: 1301–1308.

    Article  CAS  PubMed  Google Scholar 

  13. Coyle JT . NMDA receptor and schizophrenia: a brief history. Schizophr Bull 2012; 38: 920–926.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Moghaddam B, Javitt D . From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 2012; 37: 4–15.

    Article  CAS  PubMed  Google Scholar 

  15. Gunduz-Bruce H, Reinhart RM, Roach BJ, Gueorguieva R, Oliver S, D'Souza DC et al. Glutamatergic modulation of auditory information processing in the human brain. Biol Psychiatry 2012; 71: 969–977.

    Article  CAS  PubMed  Google Scholar 

  16. Javitt DC, Steinschneider M, Schroeder CE, Arezzo JC . Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia. Proc Natl Acad Sci USA 1996; 93: 11962–11967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gil-da-Costa R, Stoner GR, Fung R, Albright TD . Nonhuman primate model of schizophrenia using a noninvasive EEG method. Proc Natl Acad Sci USA 2013; 110: 15425–15430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosburg T, Kreitschmann-Andermahr I . The effects of ketamine on the mismatch negativity (MMN) in humans - a meta-analysis. Clin Neurophysiol 2016; 127: 1387–1394.

    Article  PubMed  Google Scholar 

  19. Mantysalo S, Naatanen R . The duration of a neuronal trace of an auditory stimulus as indicated by event-related potentials. Biol Psychol 1987; 24: 183–195.

    Article  CAS  PubMed  Google Scholar 

  20. Javitt DC, Spencer KM, Thaker GK, Winterer G, Hajos M . Neurophysiological biomarkers for drug development in schizophrenia. Nat Rev 2008; 7: 68–83.

    CAS  Google Scholar 

  21. Luck SJ, Mathalon DH, O'Donnell BF, Hamalainen MS, Spencer KM, Javitt DC et al. A roadmap for the development and validation of event-related potential biomarkers in schizophrenia research. Biol Psychiatry 2011; 70: 28–34.

    Article  PubMed  Google Scholar 

  22. Javitt DC . Neurophysiological models for new treatment development in schizophrenia: early sensory approaches. Ann N Y Acad Sci 2015; 1344: 92–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Naatanen R, Kahkonen S . Central auditory dysfunction in schizophrenia as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: a review. Int J Neuropsychopharmacol 2009; 12: 125–135.

    Article  PubMed  Google Scholar 

  24. Fulham WR, Michie PT, Ward PB, Rasser PE, Todd J, Johnston PJ et al. Mismatch negativity in recent-onset and chronic schizophrenia: a current source density analysis. PLoS One 2014; 9: e100221.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rissling AJ, Miyakoshi M, Sugar CA, Braff DL, Makeig S, Light GA . Cortical substrates and functional correlates of auditory deviance processing deficits in schizophrenia. NeuroImage Clin 2014; 6: 424–437.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Todd J, Michie PT, Schall U, Karayanidis F, Yabe H, Naatanen R . Deviant matters: duration, frequency, and intensity deviants reveal different patterns of mismatch negativity reduction in early and late schizophrenia. Biol Psychiatry 2008; 63: 58–64.

    Article  PubMed  Google Scholar 

  27. Makeig S, Debener S, Onton J, Delorme A . Mining event-related brain dynamics. Trends Cogn Sci 2004; 8: 204–210.

    Article  PubMed  Google Scholar 

  28. Lakatos P, Schroeder CE, Leitman DI, Javitt DC . Predictive suppression of cortical excitability and its deficit in schizophrenia. J Neurosci 2013; 33: 11692–11702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Womelsdorf T, Valiante TA, Sahin NT, Miller KJ, Tiesinga P . Dynamic circuit motifs underlying rhythmic gain control, gating and integration. Nat Neurosci 2014; 17: 1031–1039.

    Article  CAS  PubMed  Google Scholar 

  30. Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 2008; 31: 234–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Potes C, Brunner P, Gunduz A, Knight RT, Schalk G . Spatial and temporal relationships of electrocorticographic alpha and gamma activity during auditory processing. Neuroimage 2014; 97: 188–195.

    Article  PubMed  Google Scholar 

  32. Haegens S, Barczak A, Musacchia G, Lipton ML, Mehta AD, Lakatos P et al. Laminar profile and physiology of the alpha rhythm in primary visual, auditory, and somatosensory regions of neocortex. J Neurosci 2015; 35: 14341–14352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hsiao FJ, Wu ZA, Ho LT, Lin YY . Theta oscillation during auditory change detection: an MEG study. Biol Psychol 2009; 81: 58–66.

    Article  PubMed  Google Scholar 

  34. Javitt DC, Shelley A, Ritter W . Associated deficits in mismatch negativity generation and tone matching in schizophrenia. Clin Neurophysiol 2000; 111: 1733–1737.

    Article  CAS  PubMed  Google Scholar 

  35. Hong LE, Moran LV, Du X, O'Donnell P, Summerfelt A . Mismatch negativity and low frequency oscillations in schizophrenia families. Clin Neurophysiol 2012; 123: 1980–1988.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kayser J, Tenke CE, Kroppmann CJ, Alschuler DM, Fekri S, Ben-David S et al. Auditory event-related potentials and alpha oscillations in the psychosis prodrome: Neuronal generator patterns during a novelty oddball task. Int J Psychophysiol 2014; 91: 104–120.

    Article  PubMed  Google Scholar 

  37. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 2011; 106: 1125–1165.

    Article  PubMed  Google Scholar 

  38. Anticevic A, Gancsos M, Murray JD, Repovs G, Driesen NR, Ennis DJ et al. NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc Natl Acad Sci USA 2012; 109: 16720–16725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Whitfield-Gabrieli S, Ford JM . Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol 2011; 8: 49–76.

    Article  Google Scholar 

  40. Anticevic A, Cole MW, Murray JD, Corlett PR, Wang XJ, Krystal JH . The role of default network deactivation in cognition and disease. Trends Cogn Sci 2012; 16: 584–592.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sheffield JM, Barch DM . Cognition and resting-state functional connectivity in schizophrenia. Neurosci Biobehav Rev 2016; 61: 108–120.

    Article  PubMed  Google Scholar 

  42. Kantrowitz JT, Hoptman MJ, Leitman DI, Moreno-Ortega M, Lehrfeld JM, Dias E et al. Neural substrates of auditory emotion recognition deficits in schizophrenia. J Neurosci 2015; 35: 14909–14921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yeo RA, Hodde-Vargas J, Hendren RL, Vargas LA, Brooks WM, Ford CC et al. Brain abnormalities in schizophrenia-spectrum children: implications for a neurodevelopmental perspective. Psychiatry Res 1997; 76: 1–13.

    Article  CAS  PubMed  Google Scholar 

  44. Oostenveld R, Fries P, Maris E, Schoffelen JM . FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011; 2011: 156869.

    Article  PubMed  Google Scholar 

  45. Papp N, Ktonas P . Critical evaluation of complex demodulation techniques for the quantification of bioelectrical activity. Biomed Sci Instrum 1977; 13: 135–145.

    CAS  PubMed  Google Scholar 

  46. Hoechstetter K, Bornfleth H, Weckesser D, Ille N, Berg P, Scherg M . BESA source coherence: a new method to study cortical oscillatory coupling. Brain Topogr 2004; 16: 233–238.

    Article  PubMed  Google Scholar 

  47. Hoptman MJ, Antonius D, Mauro CJ, Parker EM, Javitt DC . Cortical thinning, functional connectivity, and mood-related impulsivity in schizophrenia: relationship to aggressive attitudes and behavior. Am J Psychiatry 2014; 171: 939–948.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, Di Martino A et al. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage 2013; 76: 183–201.

    Article  PubMed  Google Scholar 

  49. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE . Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 2012; 59: 2142–2154.

    Article  PubMed  Google Scholar 

  50. Jenkinson M, Bannister P, Brady M, Smith S . Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825–841.

    Article  PubMed  Google Scholar 

  51. Kay SR, Sevy S . Pyramidical model of schizophrenia. Schizophr Bull 1990; 16: 537–545.

    Article  CAS  PubMed  Google Scholar 

  52. Todd J, Whitson L, Smith E, Michie PT, Schall U, Ward PB . What's intact and what's not within the mismatch negativity system in schizophrenia. Psychophysiology 2014; 51: 337–347.

    Article  PubMed  Google Scholar 

  53. Light GA, Swerdlow NR, Braff DL . Preattentive sensory processing as indexed by the MMN and P3a brain responses is associated with cognitive and psychosocial functioning in healthy adults. J Cogn Neurosci 2007; 19: 1624–1632.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC . Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 2000; 57: 1139–1147.

    Article  CAS  PubMed  Google Scholar 

  55. Umbricht D, Vollenweider FX, Schmid L, Grubel C, Skrabo A, Huber T et al. Effects of the 5-HT2A agonist psilocybin on mismatch negativity generation and AX-continuous performance task: implications for the neuropharmacology of cognitive deficits in schizophrenia. Neuropsychopharmacology 2003; 28: 170–181.

    Article  CAS  PubMed  Google Scholar 

  56. Naatanen R, Tervaniemi M, Sussman E, Paavilainen P, Winkler I . "Primitive intelligence" in the auditory cortex. Trends Neurosci 2001; 24: 283–288.

    Article  CAS  PubMed  Google Scholar 

  57. Friston K . A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 2005; 360: 815–836.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Garrido MI, Kilner JM, Stephan KE, Friston KJ . The mismatch negativity: a review of underlying mechanisms. Clin Neurophysiol 2009; 120: 453–463.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Todd J, Michie PT, Schall U, Ward PB, Catts SV . Mismatch negativity (MMN) reduction in schizophrenia-impaired prediction—error generation, estimation or salience? Int J Psychophysiol 2012; 83: 222–231.

    Article  PubMed  Google Scholar 

  60. Wacongne C, Changeux JP, Dehaene S . A neuronal model of predictive coding accounting for the mismatch negativity. J Neurosci 2012; 32: 3665–3678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wacongne C . A predictive coding account of MMN reduction in schizophrenia. Biol Psychol 2016; 116: 68–74.

    Article  PubMed  Google Scholar 

  62. Butler PD, Martinez A, Foxe JJ, Kim D, Zemon V, Silipo G et al. Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain 2007; 130: 417–430.

    Article  PubMed  Google Scholar 

  63. Martinez A, Hillyard SA, Dias EC, Hagler DJ Jr., Butler PD, Guilfoyle DN et al. Magnocellular pathway impairment in schizophrenia: evidence from functional magnetic resonance imaging. J Neurosci 2008; 28: 7492–7500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gonzalez-Burgos G, Fish KN, Lewis DA . GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia. Neural Plast 2011; 2011: 723184.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kaser M, Soltesz F, Lawrence P, Miller S, Dodds C, Croft R et al. Oscillatory underpinnings of mismatch negativity and their relationship with cognitive function in patients with schizophrenia. PLoS One 2013; 8: e83255.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lazarewicz MT, Ehrlichman RS, Maxwell CR, Gandal MJ, Finkel LH, Siegel SJ . Ketamine modulates theta and gamma oscillations. J Cogn Neurosci 2010; 22: 1452–1464.

    Article  PubMed  Google Scholar 

  67. Ehrlichman RS, Maxwell CR, Majumdar S, Siegel SJ . Deviance-elicited changes in event-related potentials are attenuated by ketamine in mice. J Cogn Neurosci 2008; 20: 1403–1414.

    Article  PubMed  Google Scholar 

  68. Hamm JP, Yuste R . Somatostatin interneurons control a key component of mismatch negativity in mouse visual cortex. Cell Rep 2016; 16: 597–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jones EG . A new view of specific and nonspecific thalamocortical connections. Adv Neurol 1998; 77: 49–71.

    CAS  PubMed  Google Scholar 

  70. Jones EG . Thalamic organization and function after Cajal. Prog Brain Res 2002; 136: 333–357.

    Article  CAS  PubMed  Google Scholar 

  71. Jones EG . Synchrony in the interconnected circuitry of the thalamus and cerebral cortex. Ann N Y Acad Sci 2009; 1157: 10–23.

    Article  PubMed  Google Scholar 

  72. Viaene AN, Petrof I, Sherman SM . Synaptic properties of thalamic input to layers 2/3 and 4 of primary somatosensory and auditory cortices. J Neurophysiol 2011; 105: 279–292.

    Article  PubMed  Google Scholar 

  73. Hu B . Functional organization of lemniscal and nonlemniscal auditory thalamus. Exp Brain Res 2003; 153: 543–549.

    Article  CAS  PubMed  Google Scholar 

  74. Cacciaglia R, Escera C, Slabu L, Grimm S, Sanjuan A, Ventura-Campos N et al. Involvement of the human midbrain and thalamus in auditory deviance detection. Neuropsychologia 2015; 68: 51–58.

    Article  PubMed  Google Scholar 

  75. Fruhholz S, van der Zwaag W, Saenz M, Belin P, Schobert AK, Vuilleumier P et al. Neural decoding of discriminative auditory object features depends on their socio-affective valence. Soc Cogn Affect Neurosci 2016; 11: 1638–1649.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Choi JW, Lee JK, Ko D, Lee GT, Jung KY, Kim KH . Fronto-temporal interactions in the theta-band during auditory deviant processing. Neurosci Lett 2013; 548: 120–125.

    Article  CAS  PubMed  Google Scholar 

  77. Oates PA, Kurtzberg D, Stapells DR . Effects of sensorineural hearing loss on cortical event-related potential and behavioral measures of speech-sound processing. Ear Hear 2002; 23: 399–415.

    Article  PubMed  Google Scholar 

  78. Martin BA, Sigal A, Kurtzberg D, Stapells DR . The effects of decreased audibility produced by high-pass noise masking on cortical event-related potentials to speech sounds/ba/and/da. J Acoust Soc Am 1997; 101: 1585–1599.

    Article  CAS  PubMed  Google Scholar 

  79. Molholm S, Martinez A, Ritter W, Javitt DC, Foxe JJ . The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators. Cereb Cortex 2005; 15: 545–551.

    Article  PubMed  Google Scholar 

  80. Fair DA, Schlaggar BL, Cohen AL, Miezin FM, Dosenbach NU, Wenger KK et al. A method for using blocked and event-related fMRI data to study "resting state" functional connectivity. Neuroimage 2007; 35: 396–405.

    Article  PubMed  Google Scholar 

  81. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E et al. A multi-modal parcellation of human cerebral cortex. Nature 2016; 536: 171–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by USPHS grants MH49334 and MH109289 to DCJ and MH064783 and MH084031 to MJH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D C Javitt.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Sehatpour, P., Hoptman, M. et al. Neural mechanisms of mismatch negativity dysfunction in schizophrenia. Mol Psychiatry 22, 1585–1593 (2017). https://doi.org/10.1038/mp.2017.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.3

This article is cited by

Search

Quick links