Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differential effects of chronic stress in young-adult and old female mice: cognitive-behavioral manifestations and neurobiological correlates

Abstract

Stress-related psychopathology is highly prevalent among elderly individuals and is associated with detrimental effects on mood, appetite and cognition. Conversely, under certain circumstances repeated mild-to-moderate stressors have been shown to enhance cognitive performance in rodents and exert stress-inoculating effects in humans. As most stress-related favorable outcomes have been reported in adolescence and young-adulthood, this apparent disparity could result from fundamental differences in how aging organisms respond to stress. Furthermore, given prominent age-related alterations in sex hormones, the effect of chronic stress in aging females remains a highly relevant yet little studied issue. In the present study, female C57BL/6 mice aged 3 (young-adult) and 20–23 (old) months were subjected to 8 weeks of chronic unpredictable stress (CUS). Behavioral outcomes were measured during the last 3 weeks of the CUS protocol, followed by brain dissection for histological and molecular end points. We found that in young-adult female mice, CUS resulted in decreased anxiety-like behavior and enhanced cognitive performance, whereas in old female mice it led to weight loss, dysregulated locomotion and memory impairment. These phenotypes were paralleled by differential changes in the expression of hypothalamic insulin and melanocortin-4 receptors and were consistent with an age-dependent reduction in the dynamic range of stress-related changes in the hippocampal transcriptome. Supported by an integrated microRNA (miRNA)–mRNA expression analysis, the present study proposes that, when confronted with ongoing stress, neuroprotective mechanisms involving the upregulation of neurogenesis, Wnt signaling and miR-375 can be harnessed more effectively during young-adulthood. Conversely, we suggest that aging alters the pattern of immune activation elicited by stress. Ultimately, interventions that modulate these processes could reduce the burden of stress-related psychopathology in late life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bower ES, Wetherell JL, Mon T, Lenze EJ . Treating anxiety disorders in older adults: current treatments and future directions. Harv Rev Psychiatry 2015; 23: 329–342.

    PubMed  Google Scholar 

  2. de Boer A, Ter Horst GJ, Lorist MM . Physiological and psychosocial age-related changes associated with reduced food intake in older persons. Ageing Res Rev 2013; 12: 316–328.

    PubMed  Google Scholar 

  3. Boersma GJ, Liang NC, Lee RS, Albertz JD, Kastelein A, Moody LA et al. Failure to upregulate Agrp and Orexin in response to activity based anorexia in weight loss vulnerable rats characterized by passive stress coping and prenatal stress experience. Psychoneuroendocrinology 2016; 67: 171–181.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Seney ML, Sibille E . Sex differences in mood disorders: perspectives from humans and rodent models. Biol Sex Differ 2014; 5: 17.

    PubMed  PubMed Central  Google Scholar 

  5. de Celis MFR, Bornstein SR, Androutsellis-Theotokis A, Andoniadou CL, Licinio J, Wong ML et al. The effects of stress on brain and adrenal stem cells. Mol Psychiatry 2016; 21: 590–593.

    CAS  PubMed  Google Scholar 

  6. Landfield P, Baskin R, Pitler T . Brain aging correlates: retardation by hormonal-pharmacological treatments. Science 1981; 214: 581–584.

    CAS  PubMed  Google Scholar 

  7. Landfield PW, Blalock EM, Chen KC, Porter NM . A new glucocorticoid hypothesis of brain aging: implications for Alzheimer's disease. Curr Alzheimer Res 2007; 4: 205–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chetty S, Friedman AR, Taravosh-Lahn K, Kirby ED, Mirescu C, Guo F et al. Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Mol Psychiatry 2014; 19: 1275–1283.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lupien SJ, de Leon M, de Santi S, Convit A, Tarshish C, Nair NP et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci 1998; 1: 69–73.

    CAS  PubMed  Google Scholar 

  10. Kessler RC . The effects of stressful life events on depression. Annu Rev Psychol 1997; 48: 191–214.

    CAS  PubMed  Google Scholar 

  11. Katz RJ . Animal model of depression: pharmacological sensitivity of a hedonic deficit. Pharmacol Biochem Behav 1982; 16: 965–968.

    CAS  PubMed  Google Scholar 

  12. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R . Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl) 1987; 93: 358–364.

    CAS  Google Scholar 

  13. Sapolsky RM, Krey LC, McEwen BS . The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev 1986; 7: 284–301.

    CAS  PubMed  Google Scholar 

  14. Russo SJ, Murrough JW, Han MH, Charney DS, Nestler EJ . Neurobiology of resilience. Nat Neurosci 2012; 15: 1475–1484.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lotan A, Lifschytz T, Slonimsky A, Broner EC, Greenbaum L, Abedat S et al. Neural mechanisms underlying stress resilience in Ahi1 knockout mice: relevance to neuropsychiatric disorders. Mol Psychiatry 2014; 19: 243–252.

    CAS  PubMed  Google Scholar 

  16. Lotan A, Lifschytz T, Mernick B, Lory O, Levi E, Ben-Shimol E et al. Alterations in the expression of a neurodevelopmental gene exert long-lasting effects on cognitive-emotional phenotypes and functional brain networks: translational evidence from the stress-resilient Ahi1 knockout mouse. Mol Psychiatry 2017; 22: 884–899.

    CAS  PubMed  Google Scholar 

  17. Wong ML, Arcos-Burgos M, Liu S, Velez JI, Yu C, Baune BT et al. The PHF21B gene is associated with major depression and modulates the stress response. Mol Psychiatry 2017; 22: 1015–1025.

    CAS  PubMed  Google Scholar 

  18. Southwick SM, Charney DS . The science of resilience: implications for the prevention and treatment of depression. Science 2012; 338: 79–82.

    CAS  PubMed  Google Scholar 

  19. Willner P . Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 2005; 52: 90–110.

    CAS  PubMed  Google Scholar 

  20. Loi M, Koricka S, Lucassen P, Joels M . Age- and sex-dependent effects of early life stress on hippocampal neurogenesis. Front Endocrinol (Lausanne) 2014; 5.

  21. Morrison KE, Epperson CN, Sammel MD, Ewing G, Podcasy JS, Hantsoo L et al. Preadolescent adversity programs a disrupted maternal stress reactivity in humans and mice. Biol Psychiatry 2017; 81: 693–701.

    PubMed  Google Scholar 

  22. Morrison KE, Narasimhan S, Fein E, Bale TL . Peripubertal stress with social support promotes resilience in the face of aging. Endocrinology 2016; 157: 2002–2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kahana E, Kahana B, Settersen RJ . Invitation to the life course: toward a new understanding of late life. Contemporary Sociology 2003; 32: 170–172.

    Google Scholar 

  24. Southwick SM . Resilience and Mental Health: Challenges Across the Lifespan. Cambridge University Press: Cambridge, England, 2011; vol. xv: 366, pp.

    Google Scholar 

  25. Kahana E, Kelley-Moore J, Kahana B . Proactive aging: a longitudinal study of stress, resources, agency, and well-being in late life. Aging Mental Health 2012; 16: 438–451.

    PubMed  Google Scholar 

  26. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES et al. Geroscience: linking aging to chronic disease. Cell 2014; 159: 709–713.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Herbison CE, Allen K, Robinson M, Newnham J, Pennell C . The impact of life stress on adult depression and anxiety is dependent on gender and timing of exposure. Dev Psychopathol 2017; 29: 1443–1454.

    PubMed  Google Scholar 

  28. Hill MN, Hellemans KGC, Verma P, Gorzalka BB, Weinberg J . Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev 2012; 36: 2085–2117.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Foster TC . Role of estrogen receptor alpha and beta expression and signaling on cognitive function during aging. Hippocampus 2012; 22: 656–669.

    CAS  PubMed  Google Scholar 

  30. Fenchel D, Levkovitz Y, Vainer E, Kaplan Z, Zohar J, Cohen H . Beyond the HPA-axis: the role of the gonadal steroid hormone receptors in modulating stress-related responses in an animal model of PTSD. Eur Neuropsychopharmacol 2015; 25: 944–957.

    CAS  PubMed  Google Scholar 

  31. Bale TL, Epperson CN . Sex as a biological variable: who, what, when, why, and how. Neuropsychopharmacology 2017; 42: 386–396.

    CAS  PubMed  Google Scholar 

  32. Luine V, Gomez J, Beck K, Bowman R . Sex differences in chronic stress effects on cognition in rodents. Pharmacol Biochem Behav 2017; 152: 13–19.

    CAS  PubMed  Google Scholar 

  33. Bale TL, Epperson CN . Sex differences and stress across the lifespan. Nat Neurosci 2015; 18: 1413–1420.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J et al. A[beta] peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 2000; 408: 982–985.

    CAS  PubMed  Google Scholar 

  35. Alamed J, Wilcock DM, Diamond DM, Gordon MN, Morgan D . Two-day radial-arm water maze learning and memory task; robust resolution of amyloid-related memory deficits in transgenic mice. Nat Protoc 2006; 1: 1671–1679.

    CAS  PubMed  Google Scholar 

  36. Wolf G, Lotan A, Lifschytz T, Ben-Ari H, Kreisel Merzel T, Tatarskyy P et al. Differentially severe cognitive effects of compromised cerebral blood flow in aged mice: association with myelin degradation and microglia activation. Front Aging Neurosci, advance online publication, 16 June 2017; https://doi.org/10.3389/fnagi.2017.00191.

  37. Martin M . Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17, available at http://journalembnetorg/indexphp/embnetjournal/article/view/200 (Accessed 2014).

    Google Scholar 

  38. Love MI, Huber W, Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15: 550.

    PubMed  PubMed Central  Google Scholar 

  39. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29: 15–21.

    Article  CAS  PubMed  Google Scholar 

  40. Anders S, Pyl PT, Huber W . HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 2015; 31: 166–169.

    CAS  PubMed  Google Scholar 

  41. Tripathi S, Pohl Marie O, Zhou Y, Rodriguez-Frandsen A, Wang G, Stein David A et al. Meta- and orthogonal integration of influenza “Omics” data defines a role for UBR4 in virus budding. Cell Host Microbe 2015; 18: 723–735.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bauer-Mehren A . Integration of genomic information with biological networks using Cytoscape. Methods Mol Biol 2013; 1021: 37–61.

    PubMed  Google Scholar 

  43. Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, Horsman D et al. Circos: an information aesthetic for comparative genomics. Genome Res 2009; 19: 1639–1645.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Place RF, Li L-C, Pookot D, Noonan EJ, Dahiya R . MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci 2008; 105: 1608–1613.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M . Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics 2014; 2014: 15.

    Google Scholar 

  46. Madsen TM, Newton SS, Eaton ME, Russell DS, Duman RS . Chronic electroconvulsive seizure up-regulates β-catenin expression in rat hippocampus: role in adult neurogenesis. Biol Psychiatry 2003; 54: 1006–1014.

    CAS  PubMed  Google Scholar 

  47. Lucin KM, Wyss-Coray T . Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 2009; 64: 110–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kmieć Z, Pétervári E, Balaskó M, Székely M . Chapter thirteen—anorexia of aging. In: Gerald L (ed). Vitamins & Hormones vol. 92. Academic Press, 2013 pp 319–355.

    Google Scholar 

  49. DiPietro L, Anda RF, Williamson DF, Stunkard AJ . Depressive symptoms and weight change in a national cohort of adults. Int J Obes 1992; 16: 745–753.

    CAS  Google Scholar 

  50. Body weight information for C57BL/6J (000664), available from https://www.jax.org/jax-mice-and-services/strain-data-sheet-pages/body-weight-chart-0006642017 (accessed 2017).

  51. Grillo CA, Piroli GG, Kaigler KF, Wilson SP, Wilson MA, Reagan LP . Downregulation of hypothalamic insulin receptor expression elicits depressive-like behaviors in rats. Behav Brain Res 2011; 222: 230–235.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chong ACN, Vogt MC, Hill AS, Brüning JC, Zeltser LM . Central insulin signaling modulates hypothalamus–pituitary–adrenal axis responsiveness. Mol Metab 2015; 4: 83–92.

    CAS  PubMed  Google Scholar 

  53. Petervari E, Garami A, Soos S, Szekely M, Balasko M . Age-dependence of alpha-MSH-induced anorexia. Neuropeptides 2010; 44: 315–322.

    CAS  PubMed  Google Scholar 

  54. von Zglinicki T, Nieto IV, Brites D, Karagianni N, Ortolano S, Georgopoulos S et al. Frailty in mouse ageing: a conceptual approach. Mech Ageing Dev 2016; 160: 34–40.

    PubMed  Google Scholar 

  55. Boulle F, Massart R, Stragier E, Paizanis E, Zaidan L, Marday S et al. Hippocampal and behavioral dysfunctions in a mouse model of environmental stress: normalization by agomelatine. Transl Psychiatry 2014; 4: e485.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Qi C, Zou H, Zhang R, Zhao G, Jin M, Yu L . Age-related differential sensitivity to MK-801-induced locomotion and stereotypy in C57BL/6 mice. Eur J Pharmacol 2008; 580: 161–168.

    CAS  PubMed  Google Scholar 

  57. Boyle MP, Kolber BJ, Vogt SK, Wozniak DF, Muglia LJ . Forebrain glucocorticoid receptors modulate anxiety-associated locomotor activation and adrenal responsiveness. J Neurosci 2006; 26: 1971–1978.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ragneskog H, Gerdner LA, Josefsson K, Kihlgren M . Probable reasons for expressed agitation in persons with dementia. Clin Nurs Res 1998; 7: 189–206.

    CAS  PubMed  Google Scholar 

  59. D'Aquila PS, Brain P, Willner P . Effects of chronic mild stress on performance in behavioural tests relevant to anxiety and depression. Physiol Behav 1994; 56: 861–867.

    CAS  PubMed  Google Scholar 

  60. Mineur YS, Belzung C, Crusio WE . Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behav Brain Res 2006; 175: 43–50.

    PubMed  Google Scholar 

  61. Kompagne H, Bárdos G, Szénási G, Gacsályi I, Hársing LG, Lévay G . Chronic mild stress generates clear depressive but ambiguous anxiety-like behaviour in rats. Behav Brain Res 2008; 193: 311–314.

    PubMed  Google Scholar 

  62. Cancela LM, Bregonzio C, Molina VA . Anxiolytic-like effect induced by chronic stress is reversed by naloxone pretreatment. Brain Res Bull 1995; 36: 209–213.

    CAS  PubMed  Google Scholar 

  63. Rössler AS, Joubert C, Chapouthier G . Chronic mild stress alleviates anxious behaviour in female mice in two situations. Behav Processes 2000; 49: 163–165.

    PubMed  Google Scholar 

  64. Cohen H, Kozlovsky N, Alona C, Matar MA, Joseph Z . Animal model for PTSD: from clinical concept to translational research. Neuropharmacology 2012; 62: 715–724.

    CAS  PubMed  Google Scholar 

  65. Koolhaas JM, de Boer SF, Buwalda B, Meerlo P . Social stress models in rodents: towards enhanced validity. Neurobiol Stress 2017; 6: 104–112.

    CAS  PubMed  Google Scholar 

  66. Hennessy MB, Kaiser S, Sachser N . Social buffering of the stress response: diversity, mechanisms, and functions. Front Neuroendocrinol 2009; 30: 470–482.

    CAS  PubMed  Google Scholar 

  67. Plata-Salamán CR, Ilyin SE, Turrin NP, Gayle D, Flynn MC, Bedard T et al. Neither acute nor chronic exposure to a naturalistic (predator) stressor influences the interleukin-1β system, tumor necrosis factor-α, transforming growth factor-β1, and neuropeptide mRNAs in specific brain regions. Brain Res Bull 2000; 51: 187–193.

    PubMed  Google Scholar 

  68. Pothion S, Bizot J-C, Trovero F, Belzung C . Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behav Brain Res 2004; 155: 135–146.

    PubMed  Google Scholar 

  69. Zoladz PR, Conrad CD, Fleshner M, Diamond DM . Acute episodes of predator exposure in conjunction with chronic social instability as an animal model of post-traumatic stress disorder. Stress 2008; 11: 259–281.

    PubMed  PubMed Central  Google Scholar 

  70. Cohen H, Matar MA, Joseph Z . Animal models of post-traumatic stress disorder. Curr Protoc Neurosci 2013; 64: 9.45:9.45.1–9.45.18.

    Google Scholar 

  71. Kendig MD, Bowen MT, Kemp AH, McGregor IS . Predatory threat induces huddling in adolescent rats and residual changes in early adulthood suggestive of increased resilience. Behav Brain Res 2011; 225: 405–414.

    PubMed  Google Scholar 

  72. Parihar VK, Hattiangady B, Kuruba R, Shuai B, Shetty AK . Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory. Mol Psychiatry 2011; 16: 171–183.

    CAS  PubMed  Google Scholar 

  73. Wingfield JC . The comparative biology of environmental stress: behavioural endocrinology and variation in ability to cope with novel, changing environments. Anim Behav 2013; 85: 1127–1133.

    Google Scholar 

  74. Suo L, Zhao L, Si J, Liu J, Zhu W, Chai B et al. Predictable chronic mild stress in adolescence increases resilience in adulthood. Neuropsychopharmacology 2013; 38: 1387–1400.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wiedenmayer CP . Plasticity of defensive behavior and fear in early development. Neurosci Biobehav Rev 2009; 33: 432–441.

    PubMed  Google Scholar 

  76. Feder A, Nestler EJ, Charney DS . Psychobiology and molecular genetics of resilience. Nat Rev Neurosci 2009; 10: 446–457.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mohan A, Mather KA, Thalamuthu A, Baune BT, Sachdev PS . Gene expression in the aging human brain: an overview. Curr Opin Psychiatry 2016; 29: 159–167.

    PubMed  Google Scholar 

  78. Li XH, Chen JX, Yue GX, Liu YY, Zhao X, Guo XL et al. Gene expression profile of the hippocampus of rats subjected to chronic immobilization stress. PLoS ONE 2013; 8: e57621.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Somel M, Guo S, Fu N, Yan Z, Hu HY, Xu Y et al. MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res 2010; 20: 1207–1218.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ziats MN, Rennert OM . Identification of differentially expressed microRNAs across the developing human brain. Mol Psychiatry 2014; 19: 848–852.

    CAS  PubMed  Google Scholar 

  81. Behura SK, Whitfield CW . Correlated expression patterns of microRNA genes with age-dependent behavioural changes in honeybee. Insect Mol Biol 2010; 19: 431–439.

    CAS  PubMed  Google Scholar 

  82. Mendell Joshua T, Olson Eric N . MicroRNAs in stress signaling and human disease. Cell 2012; 148: 1172–1187.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Babenko O, Golubov A, Ilnytskyy Y, Kovalchuk I, Metz GA . Genomic and epigenomic responses to chronic stress involve miRNA-mediated programming. PLoS ONE 2012; 7: e29441.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Rinaldi A, Vincenti S, De Vito F, Bozzoni I, Oliverio A, Presutti C et al. Stress induces region specific alterations in microRNAs expression in mice. Behav Brain Res 2010; 208: 265–269.

    CAS  PubMed  Google Scholar 

  85. Shaltiel G, Hanan M, Wolf Y, Barbash S, Kovalev E, Shoham S et al. Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct 2013; 218: 59–72.

    CAS  PubMed  Google Scholar 

  86. Barry G . Integrating the roles of long and small non-coding RNA in brain function and disease. Mol Psychiatry 2014; 19: 410–416.

    CAS  PubMed  Google Scholar 

  87. Kocerha J, Dwivedi Y, Brennand KJ . Noncoding RNAs and neurobehavioral mechanisms in psychiatric disease. Mol Psychiatry 2015; 20: 677–684.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Saugstad JA . MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. J Cereb Blood Flow Metab 2010; 30: 1564–1576.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. McKinney BC, Sibille E . The age-by-disease interaction hypothesis of late-life depression. Am J Geriatr Psychiatry 2013; 21: 418–432.

    PubMed  Google Scholar 

  90. Dues DJ, Andrews EK, Schaar CE, Bergsma AL, Senchuk MM, Van Raamsdonk JM . Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways. Aging (Albany NY) 2016; 8: 777–795.

    CAS  Google Scholar 

  91. Sykiotis GP, Bohmann D . Stress-activated cap'n'collar transcription factors in aging and human disease. Sci Signal 2010; 3: re3–re3.

    PubMed  PubMed Central  Google Scholar 

  92. Kuhn HG, Dickinson-Anson H, Gage FH . Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 1996; 16: 2027–2033.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Simon M, Czéh B, Fuchs E . Age-dependent susceptibility of adult hippocampal cell proliferation to chronic psychosocial stress. Brain Res 2005; 1049: 244–248.

    CAS  PubMed  Google Scholar 

  94. Schouten M, Buijink M, Lucassen P, Fitzsimons CP . New neurons in aging brains: molecular control by small non-coding RNAs. Front Neurosci 2012; 6: 25.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Toledo EM, Inestrosa NC . Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1[Delta]E9 mouse model of Alzheimer's disease. Mol Psychiatry 2009; 15: 272–285.

    PubMed  Google Scholar 

  96. Bhinge A, Namboori SC, Bithell A, Soldati C, Buckley NJ, Stanton LW . MiR-375 is essential for human spinal motor neuron development and may be involved in motor neuron degeneration. Stem Cells 2016; 34: 124–134.

    CAS  PubMed  Google Scholar 

  97. Wang Y, Dong X, Li Z, Wang W, Tian J, Chen J . Downregulated RASD1 and upregulated miR-375 are involved in protective effects of calycosin on cerebral ischemia/reperfusion rats. J Neurol Sci 2014; 339: 144–148.

    CAS  PubMed  Google Scholar 

  98. Liu X, Wu Y, Huang Q, Zou D, Qin W, Chen Z . Grouping pentylenetetrazol-induced epileptic rats according to memory impairment and microRNA expression profiles in the hippocampus. PLoS ONE 2015; 10: e0126123.

    PubMed  PubMed Central  Google Scholar 

  99. Li H, Tao R, Wang J, Xia L . Upregulation of miR-375 level ameliorates morphine analgesic tolerance in mouse dorsal root ganglia by inhibiting the JAK2/STAT3 pathway. J Pain Res 2017; 10: 1279.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 2014; 17: 667–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL . Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci 2013; 33: 9003–9012.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Rodgers AB, Morgan CP, Leu NA, Bale TL . Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci 2015; 112: 13699–13704.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Denk J, Boelmans K, Siegismund C, Lassner D, Arlt S, Jahn H . MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer's disease. PLoS ONE 2015; 10: e0126423.

    PubMed  PubMed Central  Google Scholar 

  104. Cribbs DH, Berchtold NC, Perreau V, Coleman PD, Rogers J, Tenner AJ et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation 2012; 9: 1–18.

    Google Scholar 

  105. Herkenham M, Kigar SL . Contributions of the adaptive immune system to mood regulation: mechanisms and pathways of neuroimmune interactions. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79: 49–57.

    CAS  PubMed  Google Scholar 

  106. Silberman DM, Ayelli-Edgar V, Zorrilla-Zubilete M, Zieher LM, Genaro AM . Impaired T-cell dependent humoral response and its relationship with T lymphocyte sensitivity to stress hormones in a chronic mild stress model of depression. Brain Behav Immun 2004; 18: 81–90.

    CAS  PubMed  Google Scholar 

  107. Radjavi A, Smirnov I, Derecki N, Kipnis J . Dynamics of the meningeal CD4+ T-cell repertoire are defined by the cervical lymph nodes and facilitate cognitive task performance in mice. Mol Psychiatry 2014; 19: 531–532.

    CAS  PubMed  Google Scholar 

  108. Kipnis J . Multifaceted interactions between adaptive immunity and the central nervous system. Science 2016; 353: 766–771.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Baruch K, Deczkowska A, David E, Castellano JM, Miller O, Kertser A et al. Aging. Aging-induced type I interferon signaling at the choroid plexus negatively affects brain function. Science 2014; 346: 89–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ghosal S, Nunley A, Mahbod P, Lewis AG, Smith EP, Tong J et al. Mouse handling limits the impact of stress on metabolic endpoints. Physiol Behav 2015; 150: 31–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N et al. Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 1997; 132: 107–124.

    CAS  Google Scholar 

  112. Packard AEB, Ghosal S, Herman JP, Woods SC, Ulrich-Lai YM . Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes. Psychoneuroendocrinology 2014; 47: 178–188.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Luine V . Estradiol: mediator of memories, spine density and cognitive resilience to stress in female rodents. J Steroid Biochem Mol Biol 2016; 160: 189–195.

    CAS  PubMed  Google Scholar 

  114. Oberlander JG, Woolley CS . 17β-estradiol acutely potentiates glutamatergic synaptic transmission in the hippocampus through distinct mechanisms in males and females. J Neurosci 2016; 36: 2677–2690.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Fanous S, Hammer RP, Nikulina EM . Short- and long-term effects of intermittent social defeat stress on brain-derived neurotrophic factor expression in mesocorticolimbic brain regions. Neuroscience 2010; 167: 598–607.

    CAS  PubMed  Google Scholar 

  116. Shoji H, Takao K, Hattori S, Miyakawa T . Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Mol Brain 2016; 9: 11.

    PubMed  PubMed Central  Google Scholar 

  117. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE . Lifetime prevalence and age-of-onset distributions of dsm-iv disorders in the national comorbidity survey replication. Arch Gen Psychiatry 2005; 62: 593–602.

    PubMed  Google Scholar 

  118. Jiang CH, Tsien JZ, Schultz PG, Hu Y . The effects of aging on gene expression in the hypothalamus and cortex of mice. Proc Natl Acad Sci 2001; 98: 1930–1934.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Serova L, Mulhall H, Sabban E . NPY1 receptor agonist modulates development of depressive-like behavior and gene expression in hypothalamus in SPS rodent PTSD model. Front Neurosci 2017; 11: 203.

    PubMed  PubMed Central  Google Scholar 

  120. Ramot A, Jiang Z, Tian J-B, Nahum T, Kuperman Y, Justice N et al. Hypothalamic CRFR1 is essential for HPA axis regulation following chronic stress. Nat Neurosci 2017; 20: 385–388.

    CAS  PubMed  Google Scholar 

  121. Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L . Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 2002; 5: 566–572.

    CAS  PubMed  Google Scholar 

  122. Kim MS, Rossi M, Abusnana S, Sunter D, Morgan DG, Small CJ et al. Hypothalamic localization of the feeding effect of agouti-related peptide and alpha-melanocyte-stimulating hormone. Diabetes 2000; 49: 177–182.

    CAS  PubMed  Google Scholar 

  123. Schwabe L . Memory under stress: from single systems to network changes. Eur J Neurosci 2017; 45: 478–489.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Israel Ministry of Science, Technology and Space in the context of the Japan-Israel Scientific Research Cooperation Program and the Israel Ministry of Science, Technology and Space Knowledge Center Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Lerer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotan, A., Lifschytz, T., Wolf, G. et al. Differential effects of chronic stress in young-adult and old female mice: cognitive-behavioral manifestations and neurobiological correlates. Mol Psychiatry 23, 1432–1445 (2018). https://doi.org/10.1038/mp.2017.237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.237

This article is cited by

Search

Quick links