Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Striatal dopamine D1-type receptor availability: no difference from control but association with cortical thickness in methamphetamine users

Abstract

Chronic methamphetamine use poses potentially devastating consequences for directly affected individuals and for society. Lower dopamine D2-type receptor availability has been observed in striata of methamphetamine users as compared with controls, but an analogous comparison of D1-type receptors has been conducted only on post-mortem material, with no differences in methamphetamine users from controls in the caudate nucleus and putamen and higher D1-receptor density in the nucleus accumbens. Released from neurons when methamphetamine is self-administered, dopamine binds to both D1- and D2-type receptors in the striatum, with downstream effects on cortical activity. Thus, both receptor subtypes may contribute to methamphetamine-induced alterations in cortical morphology and behavior. In this study, 21 methamphetamine-dependent subjects and 23 healthy controls participated in positron emission tomography and structural magnetic resonance imaging for assessment of striatal D1- and D2-type receptor availability and cortical gray-matter thickness, respectively. Although D2-type receptor availability (BPnd) was lower in the methamphetamine group, as shown previously, the groups did not differ in D1-type BPnd. In the methamphetamine group, mean cortical gray-matter thickness was negatively associated with cumulative methamphetamine use and craving for the drug. Striatal D1-type but not D2-type BPnd was negatively associated with global mean cortical gray-matter thickness in the methamphetamine group, but no association was found between gray-matter thickness and BPnd for either dopamine receptor subtype in the control group. These results suggest a role of striatal D1-type receptors in cortical adaptation to chronic methamphetamine use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Substance Abuse and Mental Health Services Administration (SAMHSA). Behavioral Health Trends in the United States: Results from the 2014 National Survey on Drug Use and Health 2015.

  2. Chomchai C, Chomchai S . Global patterns of methamphetamine use. Curr Opin Psychiatry 2015; 28: 269–274.

    Article  Google Scholar 

  3. Sekine Y, Iyo M, Ouchi Y, Matsunaga T, Tsukada H, Okada H et al. Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry 2001; 158: 1206–1214.

    Article  CAS  Google Scholar 

  4. Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D et al. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 2001; 158: 377–382.

    Article  CAS  Google Scholar 

  5. Boileau I, Rusjan P, Houle S, Wilkins D, Tong J, Selby P et al. Increased vesicular monoamine transporter binding during early abstinence in human methamphetamine users: is VMAT2 a stable dopamine neuron biomarker? J Neurosci 2008; 28: 9850–9856.

    Article  CAS  Google Scholar 

  6. London ED, Kohno M, Morales AM, Ballard ME . Chronic methamphetamine abuse and corticostriatal deficits revealed by neuroimaging. Brain Res 2015; 1628 (Pt A): 174–185.

    Article  CAS  Google Scholar 

  7. Volkow ND, Fowler JS, Wang GJ, Baler R, Telang F . Imaging dopamine's role in drug abuse and addiction. Neuropharmacology 2009; 56 (Suppl 1): 3–8.

    Article  CAS  Google Scholar 

  8. Worsley JN, Moszczynska A, Falardeau P, Kalasinsky KS, Schmunk G, Guttman M et al. Dopamine D1 receptor protein is elevated in nucleus accumbens of human, chronic methamphetamine users. Mol Psychiatry 2000; 5: 664–672.

    Article  CAS  Google Scholar 

  9. Self DW, Barnhart WJ, Lehman DA, Nestler EJ . Opposite modulation of cocaine-seeking behavior by D1- and D2-like dopamine receptor agonists. Science 1996; 271: 1586–1589.

    Article  CAS  Google Scholar 

  10. Gross NB, Duncker PC, Marshall JF . Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity. Synapse 2011; 65: 1144–1155.

    Article  CAS  Google Scholar 

  11. Gross NB, Marshall JF . Striatal dopamine and glutamate receptors modulate methamphetamine-induced cortical Fos expression. Neuroscience 2009; 161: 1114–1125.

    Article  CAS  Google Scholar 

  12. Utter AA, Basso MA . The basal ganglia: an overview of circuits and function. Neurosci Biobehav Rev 2008; 32: 333–342.

    Article  Google Scholar 

  13. Surmeier DJ, Ding J, Day M, Wang Z, Shen W . D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 2007; 30: 228–235.

    Article  CAS  Google Scholar 

  14. Dragunow M, Faull R . The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 1989; 29: 261–265.

    Article  CAS  Google Scholar 

  15. Blandini F, Fancellu R, Orzi F, Conti G, Greco R, Tassorelli C et al. Selective stimulation of striatal dopamine receptors of the D1- or D2-class causes opposite changes of fos expression in the rat cerebral cortex. Eur J Neurosci 2003; 17: 763–770.

    Article  Google Scholar 

  16. Richfield EK, Penney JB, Young AB . Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 1989; 30: 767–777.

    Article  CAS  Google Scholar 

  17. Freeze BS, Kravitz AV, Hammack N, Berke JD, Kreitzer AC . Control of basal ganglia output by direct and indirect pathway projection neurons. J Neurosci 2013; 33: 18531–18539.

    Article  CAS  Google Scholar 

  18. Ellis GM Jr, Mann MA, Judson BA, Schramm NT, Tashchian A . Excretion patterns of cannabinoid metabolites after last use in a group of chronic users. Clin Pharmacol Ther 1985; 38: 572–578.

    Article  CAS  Google Scholar 

  19. Hoddes E, Zarcone V, Smythe H, Phillips R, Dement WC . Quantification of sleepiness: a new approach. Psychophysiology 1973; 10: 431–436.

    Article  CAS  Google Scholar 

  20. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO . The Fagerstrom test for nicotine dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict 1991; 86: 1119–1127.

    Article  CAS  Google Scholar 

  21. Sussner BD, Smelson DA, Rodrigues S, Kline A, Losonczy M, Ziedonis D . The validity and reliability of a brief measure of cocaine craving. Drug Alcohol Depend 2006; 83: 233–237.

    Article  Google Scholar 

  22. Abi-Dargham A, Martinez D, Mawlawi O, Simpson N, Hwang DR, Slifstein M et al. Measurement of striatal and extrastriatal dopamine D1 receptor binding potential with [11C]NNC 112 in humans: validation and reproducibility. J Cereb Blood Flow Metab 2000; 20: 225–243.

    Article  CAS  Google Scholar 

  23. Mukherjee J, Christian BT, Dunigan KA, Shi B, Narayanan TK, Satter M et al. Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse 2002; 46: 170–188.

    Article  CAS  Google Scholar 

  24. Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS . Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 2007; 48: 471–480.

    PubMed  Google Scholar 

  25. Jenkinson M, Bannister P, Brady M, Smith S . Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825–841.

    Article  Google Scholar 

  26. Patenaude B, Smith SM, Kennedy DN, Jenkinson M . A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 2011; 56: 907–922.

    Article  Google Scholar 

  27. Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L . Distribution of D1-and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology 1994; 11: 245–256.

    Article  CAS  Google Scholar 

  28. Lammertsma AA, Hume SP . Simplified reference tissue model for PET receptor studies. Neuroimage 1996; 4 (Pt 1): 153–158.

    Article  CAS  Google Scholar 

  29. Dale AM, Fischl B, Sereno MI . Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999; 9: 179–194.

    Article  CAS  Google Scholar 

  30. Fischl B, Sereno MI, Dale AM . Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 1999; 9: 195–207.

    Article  CAS  Google Scholar 

  31. Fischl B, Dale AM . Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 2000; 97: 11050–11055.

    Article  CAS  Google Scholar 

  32. Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK et al. A hybrid approach to the skull stripping problem in MRI. Neuroimage 2004; 22: 1060–1075.

    Article  CAS  Google Scholar 

  33. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33: 341–355.

    Article  CAS  Google Scholar 

  34. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH et al. Automatically parcellating the human cerebral cortex. Cereb Cortex 2004; 14: 11–22.

    Article  Google Scholar 

  35. Fischl B, Liu A, Dale AM . Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 2001; 20: 70–80.

    Article  CAS  Google Scholar 

  36. Nakama H, Chang L, Fein G, Shimotsu R, Jiang CS, Ernst T . Methamphetamine users show greater than normal age-related cortical gray matter loss. Addiction 2011; 106: 1474–1483.

    Article  Google Scholar 

  37. Dagher A, Bleicher C, Aston JA, Gunn RN, Clarke PB, Cumming P . Reduced dopamine D1 receptor binding in the ventral striatum of cigarette smokers. Synapse 2001; 42: 48–53.

    Article  CAS  Google Scholar 

  38. Fehr C, Yakushev I, Hohmann N, Buchholz HG, Landvogt C, Deckers H et al. Association of low striatal dopamine d2 receptor availability with nicotine dependence similar to that seen with other drugs of abuse. Am J Psychiatry 2008; 165: 507–514.

    Article  Google Scholar 

  39. Kaasinen V, Vilkman H, Hietala J, Nagren K, Helenius H, Olsson H et al. Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain. Neurobiol Aging 2000; 21: 683–688.

    Article  CAS  Google Scholar 

  40. Pohjalainen T, Rinne JO, Nagren K, Syvalahti E, Hietala J . Sex differences in the striatal dopamine D2 receptor binding characteristics in vivo. Am J Psychiatry 1998; 155: 768–773.

    CAS  PubMed  Google Scholar 

  41. Jancke L, Merillat S, Liem F, Hanggi J . Brain size, sex, and the aging brain. Hum Brain Mapp 2015; 36: 150–169.

    Article  Google Scholar 

  42. Kupchik YM, Brown RM, Heinsbroek JA, Lobo MK, Schwartz DJ, Kalivas PW . Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci 2015; 18: 1230–1232.

    Article  CAS  Google Scholar 

  43. Tong J, Ross BM, Schmunk GA, Peretti FJ, Kalasinsky KS, Furukawa Y et al. Decreased striatal dopamine D1 receptor-stimulated adenylyl cyclase activity in human methamphetamine users. Am J Psychiatry 2003; 160: 896–903.

    Article  Google Scholar 

  44. Nonaka R, Moroji T . Effects of chronic methamphetamine treatment on the binding parameters of [3H]SCH 23390, a selective D1-dopamine receptor ligand, in the rat brain. Neurosci Lett 1990; 120: 109–112.

    Article  CAS  Google Scholar 

  45. Ujike H, Akiyama K, Nishikawa H, Onoue T, Otsuki S . Lasting increase in D1 dopamine receptors in the lateral part of the substantia nigra pars reticulata after subchronic methamphetamine administration. Brain Res 1991; 540: 159–163.

    Article  CAS  Google Scholar 

  46. McCabe RT, Hanson GR, Dawson TM, Wamsley JK, Gibb JW . Methamphetamine-induced reduction in D1 and D2 dopamine receptors as evidenced by autoradiography: comparison with tyrosine hydroxylase activity. Neuroscience 1987; 23: 253–261.

    Article  CAS  Google Scholar 

  47. Martinez D, Slifstein M, Narendran R, Foltin RW, Broft A, Hwang DR et al. Dopamine D1 receptors in cocaine dependence measured with PET and the choice to self-administer cocaine. Neuropsychopharmacology 2009; 34: 1774–1782.

    Article  CAS  Google Scholar 

  48. Brecht ML, Greenwell L, Anglin MD . Substance use pathways to methamphetamine use among treated users. Addict behav 2007; 32: 24–38.

    Article  Google Scholar 

  49. Kalman D, Morissette SB, George TP . Co-morbidity of smoking in patients with psychiatric and substance use disorders. Am J Addict 2005; 14: 106–123.

    Article  Google Scholar 

  50. Patkar AA, Lundy A, Leone FT, Weinstein SP, Gottheil E, Steinberg M . Tobacco and alcohol use and medical symptoms among cocaine dependent patients. Subst Abus 2002; 23: 105–114.

    PubMed  Google Scholar 

  51. Wiers CE, Shumay E, Cabrera E, Shokri-Kojori E, Gladwin TE, Skarda E et al. Reduced sleep duration mediates decreases in striatal D2/D3 receptor availability in cocaine abusers. Transl Psychiatry 2016; 6: e752.

    Article  CAS  Google Scholar 

  52. Johansson B, Georgiev V, Fredholm BB . Distribution and postnatal ontogeny of adenosine A2A receptors in rat brain: comparison with dopamine receptors. Neuroscience 1997; 80: 1187–1207.

    Article  CAS  Google Scholar 

  53. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW . Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 1997; 276: 1265–1268.

    Article  CAS  Google Scholar 

  54. Hillion J, Canals M, Torvinen M, Casado V, Scott R, Terasmaa A et al. Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 2002; 277: 18091–18097.

    Article  CAS  Google Scholar 

  55. Graveland GA, Williams RS, DiFiglia M . A Golgi study of the human neostriatum: neurons and afferent fibers. J Comp Neurol 1985; 234: 317–333.

    Article  CAS  Google Scholar 

  56. Lyoo IK, Yoon S, Kim TS, Lim SM, Choi Y, Kim JE et al. Predisposition to and effects of methamphetamine use on the adolescent brain. Mol Psychiatry 2015; 20: 1516–1524.

    Article  CAS  Google Scholar 

  57. Thompson PM, Hayashi KM, Simon SL, Geaga JA, Hong MS, Sui Y et al. Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci 2004; 24: 6028–6036.

    Article  CAS  Google Scholar 

  58. Berman S, O'Neill J, Fears S, Bartzokis G, London ED . Abuse of amphetamines and structural abnormalities in the brain. Ann NY Acad Sci 2008; 1141: 195–220.

    Article  CAS  Google Scholar 

  59. Morales AM, Lee B, Hellemann G, O'Neill J, London ED . Gray-matter volume in methamphetamine dependence: cigarette smoking and changes with abstinence from methamphetamine. Drug Alcohol Depend 2012; 125: 230–238.

    Article  CAS  Google Scholar 

  60. Chang L, Cloak C, Patterson K, Grob C, Miller EN, Ernst T . Enlarged striatum in abstinent methamphetamine abusers: a possible compensatory response. Biol Psychiatry 2005; 57: 967–974.

    Article  CAS  Google Scholar 

  61. Jernigan TL, Gamst AC, Archibald SL, Fennema-Notestine C, Mindt MR, Marcotte TD et al. Effects of methamphetamine dependence and HIV infection on cerebral morphology. Am J Psychiatry 2005; 162: 1461–1472.

    Article  Google Scholar 

  62. Orikabe L, Yamasue H, Inoue H, Takayanagi Y, Mozue Y, Sudo Y et al. Reduced amygdala and hippocampal volumes in patients with methamphetamine psychosis. Schizophr Res 2011; 132: 183–189.

    Article  Google Scholar 

  63. Schwartz DL, Mitchell AD, Lahna DL, Luber HS, Huckans MS, Mitchell SH et al. Global and local morphometric differences in recently abstinent methamphetamine-dependent individuals. Neuroimage 2010; 50: 1392–1401.

    Article  Google Scholar 

  64. Connolly CG, Bell RP, Foxe JJ, Garavan H . Dissociated grey matter changes with prolonged addiction and extended abstinence in cocaine users. PLoS ONE 2013; 8: e59645.

    Article  CAS  Google Scholar 

  65. Morales AM, Kohno M, Robertson CL, Dean AC, Mandelkern MA, London ED . Gray-matter volume, midbrain dopamine D2/D3 receptors and drug craving in methamphetamine users. Mol Psychiatry 2015; 20: 764–771.

    Article  CAS  Google Scholar 

  66. Fernandez-Ruiz J, Hernandez M, Ramos JA . Cannabinoid-dopamine interaction in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 2010; 16: e72–e91.

    Article  CAS  Google Scholar 

  67. Bloomfield MA, Ashok AH, Volkow ND, Howes OD . The effects of Delta9-tetrahydrocannabinol on the dopamine system. Nature 2016; 539: 369–377.

    Article  CAS  Google Scholar 

  68. Renard J, Norris C, Rushlow W, Laviolette SR . Neuronal and molecular effects of cannabidiol on the mesolimbic dopamine system: implications for novel schizophrenia treatments. Neurosci Biobehav Rev 2017; 75: 157–165.

    Article  CAS  Google Scholar 

  69. Navarro M, Fernandez-Ruiz JJ, De Miguel R, Hernandez ML, Cebeira M, Ramos JA . Motor disturbances induced by an acute dose of delta 9-tetrahydrocannabinol: possible involvement of nigrostriatal dopaminergic alterations. Pharmacol Biochem Behav 1993; 45: 291–298.

    Article  CAS  Google Scholar 

  70. Rodriguez De Fonseca F, Fernandez-Ruiz JJ, Murphy LL, Cebeira M, Steger RW, Bartke A et al. Acute effects of delta-9-tetrahydrocannabinol on dopaminergic activity in several rat brain areas. Pharmacol Biochem Behav 1992; 42: 269–275.

    Article  CAS  Google Scholar 

  71. Stokes PR, Egerton A, Watson B, Reid A, Lappin J, Howes OD et al. History of cannabis use is not associated with alterations in striatal dopamine D2/D3 receptor availability. J Psychopharmacol 2012; 26: 144–149.

    Article  CAS  Google Scholar 

  72. Andersen PH, Gronvald FC, Hohlweg R, Hansen LB, Guddal E, Braestrup C et al. NNC-112, NNC-687 and NNC-756, new selective and highly potent dopamine D1 receptor antagonists. Eur J Pharmacol 1992; 219: 45–52.

    Article  CAS  Google Scholar 

  73. Slifstein M, Kegeles LS, Gonzales R, Frankle WG, Xu X, Laruelle M et al. [11C]NNC 112 selectivity for dopamine D1 and serotonin 5-HT(2A) receptors: a PET study in healthy human subjects. J Cereb Blood Flow Metab 2007; 27: 1733–1741.

    Article  CAS  Google Scholar 

  74. Mukherjee J, Yang ZY, Brown T, Lew R, Wernick M, Ouyang X et al. Preliminary assessment of extrastriatal dopamine D-2 receptor binding in the rodent and nonhuman primate brains using the high affinity radioligand, 18F-fallypride. Nucl Med Biol 1999; 26: 519–527.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported, in part, by grants from the National Institute on Drug Abuse (K23 DA027734 and R21 DA034928, ACD) and endowments from the Thomas P and Katherine K Pike Chair in Addiction Studies (EDL) and the Marjorie M Greene Trust. KO was partly supported by Department of Psychiatry, Graduate School of Medicine, Chiba University, DOMONKAI fund. We acknowledge the excellent technical support provided by Karen Lazare, Josephine Ribe and Garrett Crook in PET acquisition, and Bryan Garrison and Dmitriy Gekker in radioligand preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E D London.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okita, K., Morales, A., Dean, A. et al. Striatal dopamine D1-type receptor availability: no difference from control but association with cortical thickness in methamphetamine users. Mol Psychiatry 23, 1320–1327 (2018). https://doi.org/10.1038/mp.2017.172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.172

This article is cited by

Search

Quick links