Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

The complement system: a gateway to gene–environment interactions in schizophrenia pathogenesis

Abstract

The pathogenesis of schizophrenia is considered to be multi-factorial, with likely gene–environment interactions (GEI). Genetic and environmental risk factors are being identified with increasing frequency, yet their very number vastly increases the scope of possible GEI, making it difficult to identify them with certainty. Accumulating evidence suggests a dysregulated complement pathway among the pathogenic processes of schizophrenia. The complement pathway mediates innate and acquired immunity, and its activation drives the removal of damaged cells, autoantigens and environmentally derived antigens. Abnormalities in complement functions occur in many infectious and autoimmune disorders that have been linked to schizophrenia. Many older reports indicate altered serum complement activity in schizophrenia, though the data are inconclusive. Compellingly, recent genome-wide association studies suggest repeat polymorphisms incorporating the complement 4A (C4A) and 4B (C4B) genes as risk factors for schizophrenia. The C4A/C4B genetic associations have re-ignited interest not only in inflammation-related models for schizophrenia pathogenesis, but also in neurodevelopmental theories, because rodent models indicate a role for complement proteins in synaptic pruning and neurodevelopment. Thus, the complement system could be used as one of the ‘staging posts’ for a variety of focused studies of schizophrenia pathogenesis. They include GEI studies of the C4A/C4B repeat polymorphisms in relation to inflammation-related or infectious processes, animal model studies and tests of hypotheses linked to autoimmune diseases that can co-segregate with schizophrenia. If they can be replicated, such studies would vastly improve our understanding of pathogenic processes in schizophrenia through GEI analyses and open new avenues for therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Gottesman II, Shields J . A polygenic theory of schizophrenia. Proc Natl Acad Sci 1967; 58: 199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    CAS  PubMed  Google Scholar 

  3. Mednick SA, Machon RA, Huttunen MO, Bonett D . Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 1988; 45: 189–192.

    Article  CAS  PubMed  Google Scholar 

  4. Selten JP, Termorshuizen F . The serological evidence for maternal influenza as risk factor for psychosis in offspring is insufficient: critical review and meta-analysis. Schizophr Res 2016; 183: 2–9.

    Article  PubMed  Google Scholar 

  5. Davies G, Welham J, Chant D, Torrey EF, McGrath J . A systematic review and meta-analysis of Northern Hemisphere season of birth studies in schizophrenia. Schizophr Bull 2003; 29: 587–593.

    Article  PubMed  Google Scholar 

  6. Pedersen CB . Persons with schizophrenia migrate towards urban areas due to the development of their disorder or its prodromata. Schizophr Res 2015; 168: 204–208.

    Article  PubMed  Google Scholar 

  7. Suvisaari JM, Taxell-Lassas V, Pankakoski M, Haukka JK, Lönnqvist JK, Häkkinen LT . Obstetric complications as risk factors for schizophrenia spectrum psychoses in offspring of mothers with psychotic disorder. Schizophr Bull 2013; 39: 1056–1066.

    Article  PubMed  Google Scholar 

  8. Kirkbride JB, Susser E, Kundakovic M, Kresovich JK, Davey Smith G, Relton CL . Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects? Epigenomics 2012; 4: 303–315.

    Article  CAS  PubMed  Google Scholar 

  9. Di Forti M, Morgan C, Dazzan P, Pariante C, Mondelli V, Marques TR et al. High-potency cannabis and the risk of psychosis. Br J Psychiatry 2009; 195: 488–491.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Perroud N, Courtet P, Vincze I, Jaussent I, Jollant F, Bellivier F et al. Interaction between BDNF Val66Met and childhood trauma on adult's violent suicide attempt. Genes Brain Behav 2008; 7: 314–322.

    Article  CAS  PubMed  Google Scholar 

  11. Ruby E, Rothman K, Corcoran C, Goetz RR, Malaspina D . Influence of early trauma on features of schizophrenia. Early Interv Psychiatry; e-pub ahead of print 23 March 2015; doi: 10.1111/eip.12239.

    Article  PubMed  PubMed Central  Google Scholar 

  12. van Os J, Rutten BP, Myin-Germeys I, Delespaul P, Viechtbauer W, van Zelst C et al. Identifying gene-environment interactions in schizophrenia: contemporary challenges for integrated, large-scale investigations. Schizophr Bull 2014; 40: 729–736.

    Article  PubMed  Google Scholar 

  13. Nimgaonkar VL, Wessely S, Tune LE, Murray RM . Response to drugs in schizophrenia: the influence of family history, obstetric complications and ventricular enlargement. Psychol Med 1988; 18: 583–592.

    Article  CAS  PubMed  Google Scholar 

  14. Forsyth JK, Ellman LM, Tanskanen A, Mustonen U, Huttunen MO, Suvisaari J et al. Genetic risk for schizophrenia, obstetric complications, and adolescent school outcome: evidence for gene-environment interaction. Schizophr Bull 2013; 39: 1067–1076.

    Article  PubMed  Google Scholar 

  15. Shirts BH, Wood J, Yolken RH, Nimgaonkar VL . Association study of IL10, IL1ß, and IL1RN and schizophrenia using tag SNPs from a comprehensive database: suggestive association with rs16944 at IL1ß. Schizophr Res 2006; 88: 235–244.

    Article  PubMed  Google Scholar 

  16. Kim JJ, Shirts BH, Dayal M, Bacanu S, Wood J, Xie W et al. Are exposure to cytomegalovirus and genetic variation on chromosome 6p joint risk factors for schizophrenia? Ann Med 2007; 39: 145–153.

    Article  CAS  PubMed  Google Scholar 

  17. McGrath JJ, Mortensen PB, Visscher PM, Wray NR . Where GWAS and epidemiology meet: opportunities for the simultaneous study of genetic and environmental risk factors in schizophrenia. Schizophr Bull 2013; 39: 955–959.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Borglum AD, Demontis D, Grove J, Pallesen J, Hollegaard MV, Pedersen CB et al. Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci. Mol Psychiatry 2014; 19: 325–333.

    Article  CAS  PubMed  Google Scholar 

  19. Avramopoulos D, Pearce BD, McGrath J, Wolyniec P, Wang R, Eckart N et al. Infection and inflammation in schizophrenia and bipolar disorder: a genome wide study for interactions with genetic variation. PLoS One 2015; 10: e0116696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bani-Fatemi A, Graff A, Zai C, Strauss J, De Luca V . GWAS analysis of suicide attempt in schizophrenia: main genetic effect and interaction with early life trauma. Neurosci Lett 2016; 622: 102–106.

    Article  CAS  PubMed  Google Scholar 

  21. Karl T, Arnold JC . Schizophrenia: a consequence of gene-environment interactions? Front Behav Neurosci 2014; 8: 435.

    Article  PubMed  PubMed Central  Google Scholar 

  22. van Os J, Rutten BP, Poulton R . Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr Bull 2008; 34: 1066–1082.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mittal VA, Ellman LM, Cannon TD . Gene-environment interaction and covariation in schizophrenia: the role of obstetric complications. Schizophr Bull 2008; 34: 1083–1094.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Botto LD, Khoury MJ . Commentary: facing the challenge of gene-environment interaction: the two-by-four table and beyond. Am J Epidemiol 2001; 153: 1016–1020.

    Article  CAS  PubMed  Google Scholar 

  25. Ottman R . Gene-environment interaction: definitions and study designs. Prev Med 1996; 25: 764–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khoury MJ, Flanders WD . Nontraditional epidemiologic approaches in the analysis of gene-environment interaction: case-control studies with no controls. Am J Epidemiol 1996; 144: 207–213.

    Article  CAS  PubMed  Google Scholar 

  27. Gatto NM, Campbell UB, Rundle AG, Ahsan H . Further development of the case-only design for assessing gene-environment interaction: evaluation of and adjustment for bias. Int J Epidemiol 2004; 33: 1014–1024.

    Article  PubMed  Google Scholar 

  28. Chatterjee N, Kalaylioglu Z, Carroll RJ . Exploiting gene-environment independence in family-based case-control studies: increased power for detecting associations, interactions and joint effects. Genet Epidemiol 2005; 28: 138–156.

    Article  PubMed  Google Scholar 

  29. Modinos G, Iyegbe C, Prata D, Rivera M, Kempton MJ, Valmaggia LR et al. Molecular genetic gene-environment studies using candidate genes in schizophrenia: a systematic review. Schizophr Res 2013; 150: 356–365.

    Article  PubMed  Google Scholar 

  30. Prasad KM, Talkowski ME, Chowdari KV, McClain L, Yolken RH, Nimgaonkar VL . Candidate genes and their interactions with other genetic/environmental risk factors in the etiology of schizophrenia. Brain Res Bull 2009; 83: 86–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ricklin D, Reis ES, Mastellos DC, Gros P, Lambris JD . Complement component C3 - The "Swiss Army Knife" of innate immunity and host defense. Immunol Rev 2016; 274: 33–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murphy K, Weaver C . Innate Immunity: the First Lines of Defense. page 49, Janeway's Immunobiology (9th edn.) Garland Science.

  33. Stoermer KA, Morrison TE . Complement and viral pathogenesis. Virology 2011; 411: 362–373.

    Article  CAS  PubMed  Google Scholar 

  34. Carroll MC . The complement system in regulation of adaptive immunity. Nat Immunol 2004; 5: 981–986.

    Article  CAS  PubMed  Google Scholar 

  35. Mathern DR, Heeger PS . Molecules great and Small: the complement system. Clin J Am Soc Nephrol 2015; 10: 1636–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kirschfink M, Mollnes TE . Modern complement analysis. Clin Diagn Lab Immunol 2003; 10: 982–989.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N et al. The classical complement cascade mediates CNS synapse elimination. Cell 2007; 131: 1164–1178.

    Article  CAS  PubMed  Google Scholar 

  38. Veerhuis R, Nielsen HM, Tenner AJ . Complement in the brain. Mol Immunol 2011; 48: 1592–1603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74: 691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N et al. Schizophrenia risk from complex variation of complement component 4. Nature 2016; 530: 177–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang HY et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 2016; 165: 921–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016; 352: 712–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vasek MJ, Garber C, Dorsey D, Durrant DM, Bollman B, Soung A et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature 2016; 534: 538–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bialas AR, Stevens B . TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci 2013; 16: 1773–1782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ransohoff RM, Stevens B . Neuroscience. How many cell types does it take to wire a brain? Science 2011; 333: 1391–1392.

    Article  CAS  PubMed  Google Scholar 

  46. Watkins LM, Neal JW, Loveless S, Michailidou I, Ramaglia V, Rees MI et al. Complement is activated in progressive multiple sclerosis cortical grey matter lesions. J Neuroinflammation 2016; 13: 161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rus H, Cudrici C, David S, Niculescu F . The complement system in central nervous system diseases. Autoimmunity 2006; 39: 395–402.

    Article  CAS  PubMed  Google Scholar 

  48. Lin P, Nicholls L, Assareh H, Fang Z, Amos TG, Edwards RJ et al. Transcriptome analysis of human brain tissue identifies reduced expression of complement complex C1Q Genes in Rett syndrome. BMC Genomics 2016; 17: 427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Veerhuis R, Janssen I, De Groot CJ, Van Muiswinkel FL, Hack CE, Eikelenboom P . Cytokines associated with amyloid plaques in Alzheimer's disease brain stimulate human glial and neuronal cell cultures to secrete early complement proteins, but not C1-inhibitor. Exp Neurol 1999; 160: 289–299.

    Article  CAS  PubMed  Google Scholar 

  50. Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA, Coutellier L et al. A dramatic increase of C1q protein in the CNS during normal aging. J Neurosci 2013; 33: 13460–13474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Benard M, Raoult E, Vaudry D, Leprince J, Falluel-Morel A, Gonzalez BJ et al. Role of complement anaphylatoxin receptors (C3aR, C5aR) in the development of the rat cerebellum. Mol Immunol 2008; 45: 3767–3774.

    Article  CAS  PubMed  Google Scholar 

  52. Spivak B, Radwan M, Brandon J, Baruch Y, Stawski M, Tyano S et al. Reduced total complement haemolytic activity in schizophrenic patients. Psychol Med 1993; 23: 315–318.

    Article  CAS  PubMed  Google Scholar 

  53. Mayilyan KR, Weinberger DR, Sim RB . The complement system in schizophrenia. Drug News Perspect 2008; 21: 200–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mayilyan KR, Dodds AW, Boyajyan AS, Soghoyan AF, Sim RB . Complement C4B protein in schizophrenia. World J Biol Psychiatry 2008; 9: 225–230.

    Article  PubMed  Google Scholar 

  55. Shcherbakova IV, Neshkova EA, Dotsenko VL, Kozlov LV, Mishin AA, Platonova TP et al. Activation of kallikrein-kinin system, degranulating activity of neutrophils and blood-brain barrier in schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova 1998; 98: 38–41.

    CAS  PubMed  Google Scholar 

  56. Shcherbakova I, Neshkova E, Dotsenko V, Platonova T, Shcherbakova E, Yarovaya G . The possible role of plasma kallikrein-kinin system and leukocyte elastase in pathogenesis of schizophrenia. Immunopharmacology 1999; 43: 273–279.

    Article  CAS  PubMed  Google Scholar 

  57. Hakobyan S, Boyajyan A, Sim RB . Classical pathway complement activity in schizophrenia. Neurosci Lett 2005; 374: 35–37.

    Article  CAS  PubMed  Google Scholar 

  58. Mayilyan KR, Arnold JN, Presanis JS, Soghoyan AF, Sim RB . Increased complement classical and mannan-binding lectin pathway activities in schizophrenia. Neurosci Lett 2006; 404: 336–341.

    Article  CAS  PubMed  Google Scholar 

  59. Maes M, Delange J, Ranjan R, Meltzer HY, Desnyder R, Cooremans W et al. Acute phase proteins in schizophrenia, mania and major depression: modulation by psychotropic drugs. Psychiatry Res 1997; 66: 1–11.

    Article  CAS  PubMed  Google Scholar 

  60. Fananas L, Moral P, Panadero MA, Bertranpetit J . Complement genetic markers in schizophrenia: C3, BF and C6 polymorphisms. Hum Hered 1992; 42: 162–167.

    Article  CAS  PubMed  Google Scholar 

  61. Idonije OB, Akinlade KS, Ihenyen O, Arinola OG . Complement factors in newly diagnosed Nigerian schizoprenic patients and those on antipsychotic therapy. Niger J Physiol Sci 2012; 27: 19–21.

    CAS  PubMed  Google Scholar 

  62. Severance EG, Gressitt KL, Halling M, Stallings CR, Origoni AE, Vaughan C et al. Complement C1q formation of immune complexes with milk caseins and wheat glutens in schizophrenia. Neurobiol Dis 2012; 48: 447–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Severance EG, Gressitt KL, Buka SL, Cannon TD, Yolken RH . Maternal complement C1q and increased odds for psychosis in adult offspring. Schizophr Res 2014; 159: 14–19.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Schroers R, Nothen MM, Rietschel M, Albus M, Maier W, Schwab S et al. Investigation of complement C4B deficiency in schizophrenia. Hum Hered 1997; 47: 279–282.

    Article  CAS  PubMed  Google Scholar 

  65. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.

    Article  CAS  PubMed Central  Google Scholar 

  66. Mason MJ, Speake C, Gersuk VH, Nguyen QA, O'Brien KK, Odegard JM et al. Low HERV-K(C4) copy number is associated with type 1 diabetes. Diabetes 2014; 63: 1789–1795.

    Article  CAS  PubMed  Google Scholar 

  67. Blanchong CA, Chung EK, Rupert KL, Yang Y, Yang Z, Zhou B et al. Genetic, structural and functional diversities of human complement components C4A and C4B and their mouse homologues, Slp and C4. Int Immunopharmacol 2001; 1: 365–392.

    Article  CAS  PubMed  Google Scholar 

  68. Yang Y, Chung EK, Zhou B, Blanchong CA, Yu CY, Fust G et al. Diversity in intrinsic strengths of the human complement system: serum C4 protein concentrations correlate with C4 gene size and polygenic variations, hemolytic activities, and body mass index. J Immunol 2003; 171: 2734–2745.

    Article  CAS  PubMed  Google Scholar 

  69. Chung EK, Yang Y, Rennebohm RM, Lokki ML, Higgins GC, Jones KN et al. Genetic sophistication of human complement components C4A and C4B and RP-C4-CYP21-TNX (RCCX) modules in the major histocompatibility complex. Am J Hum Genet 2002; 71: 823–837.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Blanchong CA, Zhou B, Rupert KL, Chung EK, Jones KN, Sotos JF et al. Deficiencies of human complement component C4A and C4B and heterozygosity in length variants of RP-C4-CYP21-TNX (RCCX) modules in caucasians. The load of RCCX genetic diversity on major histocompatibility complex-associated disease. J Exp Med 2000; 191: 2183–2196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chung EK, Yang Y, Rupert KL, Jones KN, Rennebohm RM, Blanchong CA et al. Determining the one, two, three, or four long and short loci of human complement C4 in a major histocompatibility complex haplotype encoding C4A or C4B proteins. Am J Hum Genet 2002; 71: 810–822.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci 2016; 19: 1442–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Feinberg I . Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res 1982; 17: 319–334.

    Article  PubMed  Google Scholar 

  74. Huttenlocher PR . Synaptic density in human frontal cortex - developmental changes and effects of aging. Brain Res 1979; 163: 195–205.

    Article  CAS  PubMed  Google Scholar 

  75. Petanjek Z, Judas M, Simic G, Rasin MR, Uylings HB, Rakic P et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci USA 2011; 108: 13281–13286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bhatt DH, Zhang S, Gan WB . Dendritic spine dynamics. Annu Rev Physiol 2009; 71: 261–282.

    Article  CAS  PubMed  Google Scholar 

  77. Huttenlocher PR, Dabholkar AS . Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 1997; 387: 167–178.

    Article  CAS  PubMed  Google Scholar 

  78. Bourgeois JP, Goldman-Rakic PS, Rakic P . Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex 1994; 4: 78–96.

    Article  CAS  PubMed  Google Scholar 

  79. Giedd JN, Jeffries NO, Blumenthal J, Castellanos FX, Vaituzis AC, Fernandez T et al. Childhood-onset schizophrenia: progressive brain changes during adolescence. Biol Psychiatry 1999; 46: 892–898.

    Article  CAS  PubMed  Google Scholar 

  80. Jennings C . Developmental neurobiology. Death of a synapse. Nature 1994; 372: 498–499.

    Article  CAS  PubMed  Google Scholar 

  81. Han M, Zhang JC, Hashimoto K . Increased levels of C1q in the prefrontal cortex of adult offspring after maternal immune activation: prevention by 7,8-dihydroxyflavone. Clin Psychopharmacol Neurosci 2017; 15: 64–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Beurskens FJ, Kuenen JD, Hofhuis F, Fluit AC, Robins DM, Van Dijk H . Sex-limited protein: in vitro and in vivo functions. Clin Exp Immunol 1999; 116: 395–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stavenhagen JB, Robins DM . An ancient provirus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell 1988; 55: 247–254.

    Article  CAS  PubMed  Google Scholar 

  84. Fernando MM, Boteva L, Morris DL, Zhou B, Wu YL, Lokki ML et al. Assessment of complement C4 gene copy number using the paralog ratio test. Hum Mutat 2010; 31: 866–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Barba G, Rittner C, Schneider PM . Genetic basis of human complement C4A deficiency. Detection of a point mutation leading to nonexpression. J Clin Invest 1993; 91: 1681–1686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ram S, Lewis LA, Rice PA . Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev 2010; 23: 740–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen N, Reiss CS . Innate immunity in viral encephalitis: role of C5. Viral Immunol 2002; 15: 365–372.

    Article  CAS  PubMed  Google Scholar 

  88. Crisci E, Ellegard R, Nystrom S, Rondahl E, Serrander L, Bergstrom T et al. Complement opsonization promotes herpes simplex virus 2 infection of human dendritic cells. J Virol 2016; 90: 4939–4950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fuchs A, Pinto AK, Schwaeble WJ, Diamond MS . The lectin pathway of complement activation contributes to protection from West Nile virus infection. Virology 2011; 412: 101–109.

    Article  CAS  PubMed  Google Scholar 

  90. Kotwal GJ, Fernando N, Zhou J, Valter K . Exploring the potential benefits of vaccinia virus complement control protein in controlling complement activation in pathogenesis of the central nervous system diseases. Mol Immunol 2014; 61: 204–209.

    Article  CAS  PubMed  Google Scholar 

  91. Rhoades RE, Tabor-Godwin JM, Tsueng G, Feuer R . Enterovirus infections of the central nervous system. Virology 2011; 411: 288–305.

    Article  CAS  PubMed  Google Scholar 

  92. Speth C, Schabetsberger T, Mohsenipour I, Stockl G, Wurzner R, Stoiber H et al. Mechanism of human immunodeficiency virus-induced complement expression in astrocytes and neurons. J Virol 2002; 76: 3179–3188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Da Costa XJ, Brockman MA, Alicot E, Ma M, Fischer MB, Zhou X et al. Humoral response to herpes simplex virus is complement-dependent. Proc Natl Acad Sci USA 1999; 96: 12708–12712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Eriksson CE, Studahl M, Bergstrom T . Acute and prolonged complement activation in the central nervous system during herpes simplex encephalitis. J Neuroimmunol 2016; 295-296: 130–138.

    Article  CAS  PubMed  Google Scholar 

  95. Mullick J, Kadam A, Sahu A . Herpes and pox viral complement control proteins: 'the mask of self'.Trends Immunol 2003; 24: 500–507.

    Article  CAS  PubMed  Google Scholar 

  96. Fujita T . Evolution of the lectin-complement pathway and its role in innate immunity. Nat Rev Immunol 2002; 2: 346–353.

    Article  CAS  PubMed  Google Scholar 

  97. Kittlesen DJ, Chianese-Bullock KA, Yao ZQ, Braciale TJ, Hahn YS . Interaction between complement receptor gC1qR and hepatitis C virus core protein inhibits T-lymphocyte proliferation. J Clin Invest 2000; 106: 1239–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nascimento EJ, Silva AM, Cordeiro MT, Brito CA, Gil LH, Braga-Neto U et al. Alternative complement pathway deregulation is correlated with dengue severity. PLoS One 2009; 4: e6782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Araujo FG, Rosenberg LT, Remington JS . Experimental Toxoplasma gondii infection in mice: the role of the fifth component of complement. Proc Soc Exp Biol Med 1975; 149: 800–804.

    Article  CAS  PubMed  Google Scholar 

  100. Fuhrman SA, Joiner KA . Toxoplasma gondii: mechanism of resistance to complement-mediated killing. J Immunol 1989; 142: 940–947.

    CAS  PubMed  Google Scholar 

  101. Xiao J, Li Y, Gressitt KL, He H, Kannan G, Schultz TL et al. Cerebral complement C1q activation in chronic Toxoplasma infection. Brain Behav Immun 2016; 58: 52–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kannan G, Crawford JA, Yang C, Gressitt KL, Ihenatu C, Krasnova IN et al. Anti-NMDA receptor autoantibodies and associated neurobehavioral pathology in mice are dependent on age of first exposure to Toxoplasma gondii. Neurobiol Dis 2016; 91: 307–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Torrey EF, Bartko JJ, Yolken RH . Toxoplasma gondii and other risk factors for schizophrenia: an update. Schizophr Bull 2012; 38: 642–647.

    Article  PubMed  PubMed Central  Google Scholar 

  104. King DJ, Cooper SJ, Earle JA, Martin SJ, McFerran NV, Rima BK et al. A survey of serum antibodies to eight common viruses in psychiatric patients. Br J Psychiatry 1985; 147: 137–144.

    Article  CAS  PubMed  Google Scholar 

  105. Pedersen MG, Stevens H, Pedersen CB, Nørgaard-Pedersen B, Mortensen PB . Toxoplasma infection and later development of schizophrenia in mothers. Am J Psychiatry 2011; 168: 814–821.

    Article  PubMed  Google Scholar 

  106. Campbell BM, Charych E, Lee AW, Moller T . Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci 2014; 8: 12.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Prasad KM, Watson AM, Dickerson FB, Yolken RH, Nimgaonkar VL . Exposure to herpes simplex virus type 1 and cognitive impairments in individuals with schizophrenia. Schizophr Bull 2012; 38: 1137–1148.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kannan G, Sawa A, Pletnikov MV . Mouse models of gene-environment interactions in schizophrenia. Neurobiol Dis 2013; 57: 5–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yolken RH, Torrey EF . Are some cases of psychosis caused by microbial agents? A review of the evidence. Mol Psychiatry 2008; 13: 470–479.

    Article  CAS  PubMed  Google Scholar 

  110. Ballanti E, Perricone C, Greco E, Ballanti M, Di Muzio G, Chimenti MS et al. Complement and autoimmunity. Immunol Res 2013; 56: 477–491.

    Article  CAS  PubMed  Google Scholar 

  111. Yang Y, Chung EK, Zhou B, Lhotta K, Hebert LA, Birmingham DJ et al. The intricate role of complement component C4 in human systemic lupus erythematosus. Curr Dir Autoimmun 2004; 7: 98–132.

    Article  CAS  PubMed  Google Scholar 

  112. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308: 385–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H et al. Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med 2007; 357: 553–561.

    Article  CAS  PubMed  Google Scholar 

  114. Eaton WW, Hayward C, Ram R . Schizophrenia and rheumatoid arthritis: a review. Schizophr Res 1992; 6: 181–192.

    Article  CAS  PubMed  Google Scholar 

  115. Benros ME, Nielsen PR, Nordentoft M, Eaton WW, Dalton SO, Mortensen PB . Autoimmune diseases and severe infections as risk factors for schizophrenia: a 30-year population-based register study. Am J Psychiatry 2011; 168: 1303–1310.

    Article  PubMed  Google Scholar 

  116. Nonaka M, Yoshizaki F . Primitive complement system of invertebrates. Immunol Rev 2004; 198: 203–215.

    Article  CAS  PubMed  Google Scholar 

  117. Nonaka M . Evolution of the complement system. Sub-cellular biochemistry 2014; 80: 31–43.

    Article  CAS  PubMed  Google Scholar 

  118. Rubicz R, Yolken R, Drigalenko E, Carless MA, Dyer TD, Kent J Jr. et al. Genome-wide genetic investigation of serological measures of common infections. Eur J Hum Genet 2015; 23: 1544–1548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pierce BL, Ahsan H . Case-only genome-wide interaction study of disease risk, prognosis and treatment. Genet Epidemiol 2010; 34: 7–15.

    PubMed  PubMed Central  Google Scholar 

  120. Ghebrehiwet B . The complement system: an evolution in progress. F1000Res 2016; 5: 2840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Beltrame MH, Catarino SJ, Goeldner I, Boldt AB, de Messias-Reason IJ . The lectin pathway of complement and rheumatic heart disease. Front Pediatr 2014; 2: 148.

    PubMed  Google Scholar 

  122. Hou S, Qi J, Liao D, Zhang Q, Fang J, Zhou Y et al. Copy number variations of complement component C4 are associated with Behcet's disease but not with ankylosing spondylitis associated with acute anterior uveitis. Arthritis Rheum 2013; 65: 2963–2970.

    Article  CAS  PubMed  Google Scholar 

  123. Yang Y, Chung EK, Wu YL, Savelli SL, Nagaraja HN, Zhou B et al. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am J Hum Genet 2007; 80: 1037–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wu YL, Yang Y, Chung EK, Zhou B, Kitzmiller KJ, Savelli SL et al. Phenotypes, genotypes and disease susceptibility associated with gene copy number variations: complement C4 CNVs in European American healthy subjects and those with systemic lupus erythematosus. Cytogenet Genome Res 2008; 123: 131–141.

    Article  CAS  PubMed  Google Scholar 

  125. Yih Chen J, Ling WuY, Yin Mok M, Jan Wu YJ, Lintner KE, Wang CM et al. Effects of complement C4 gene copy number variations, size dichotomy, and C4A deficiency on genetic risk and clinical presentation of systemic lupus erythematosus in East Asian populations. Arthritis Rheumatol 2016; 68: 1442–1453.

    Article  CAS  Google Scholar 

  126. Liu YH, Wan L, Chang CT, Liao WL, Chen WC, Tsai Y et al. Association between copy number variation of complement component C4 and Graves' disease. J Biomed Sci 2011; 18: 71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cleynen I, Konings P, Robberecht C, Laukens D, Amininejad L, Theatre E et al. Genome-wide copy number variation scan identifies complement component C4 as novel susceptibility gene for Crohn's disease. Inflamm Bowel Dis 2016; 22: 505–515.

    Article  PubMed  Google Scholar 

  128. Zorzetto M, Datturi F, Divizia L, Pistono C, Campo I, De Silvestri A et al. Complement C4A and C4B gene copy Number study in Alzheimer's disease patients. Curr Alzheimer Res 2017; 14: 303–308.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by grants from the Stanley Medical Research Institute to RHY and grant 07R-1712 to VLN. Additional support was provided by the National Institute of Health (MH63480, MH93246 and D43 TW009114 to VLN; MH101566 to KMP; MH94268 to RHY). We thank Mr Joel Wood for help with illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V L Nimgaonkar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimgaonkar, V., Prasad, K., Chowdari, K. et al. The complement system: a gateway to gene–environment interactions in schizophrenia pathogenesis. Mol Psychiatry 22, 1554–1561 (2017). https://doi.org/10.1038/mp.2017.151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.151

This article is cited by

Search

Quick links