Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synaptic activity protects against AD and FTD-like pathology via autophagic-lysosomal degradation

Abstract

Changes in synaptic excitability and reduced brain metabolism are among the earliest detectable alterations associated with the development of Alzheimer’s disease (AD). Stimulation of synaptic activity has been shown to be protective in models of AD beta-amyloidosis. Remarkably, deep brain stimulation (DBS) provides beneficial effects in AD patients, and represents an important therapeutic approach against AD and other forms of dementia. While several studies have explored the effect of synaptic activation on beta-amyloid, little is known about Tau protein. In this study, we investigated the effect of synaptic stimulation on Tau pathology and synapses in in vivo and in vitro models of AD and frontotemporal dementia (FTD). We found that chronic DBS or chemically induced synaptic stimulation reduced accumulation of pathological forms of Tau and protected synapses, while chronic inhibition of synaptic activity worsened Tau pathology and caused detrimental effects on pre- and post-synaptic markers, suggesting that synapses are affected. Interestingly, degradation via the proteasomal system was not involved in the reduction of pathological Tau during stimulation. In contrast, chronic synaptic activation promoted clearance of Tau oligomers by autophagosomes and lysosomes. Chronic inhibition of synaptic activity resulted in opposite outcomes, with build-up of Tau oligomers in enlarged auto-lysosomes. Our data indicate that synaptic activity counteracts the negative effects of Tau in AD and FTD by acting on autophagy, providing a rationale for therapeutic use of DBS and synaptic stimulation in tauopathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bayer TA, Wirths O . Intracellular accumulation of amyloid-beta - a predictor for synaptic dysfunction and neuron loss in Alzheimer's disease. Front Aging Neurosci 2010; 2: 1–10.

    Google Scholar 

  2. Gouras GK, Tampellini D, Takahashi RH, Capetillo-Zarate E . Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer's disease. Acta Neuropathol 2010; 119: 523–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tai HC, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT . The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am J Pathol 2012; 181: 1426–1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clare R, King VG, Wirenfeldt M, Vinters HV . Synapse loss in dementias. J Neurosci Res 2010; 88: 2083–2090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Selkoe DJ . Alzheimer's disease is a synaptic failure. Science 2002; 298: 789–791.

    Article  CAS  PubMed  Google Scholar 

  6. DeKosky ST, Scheff SW . Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol 1990; 27: 457–464.

    Article  CAS  PubMed  Google Scholar 

  7. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30: 572–580.

    Article  CAS  PubMed  Google Scholar 

  8. Herholz K, Carter SF, Jones M . Positron emission tomography imaging in dementia. Br J Radiol 2007; 80 (Spec No 2): S160–S167.

    Article  PubMed  Google Scholar 

  9. O'Brien JL, O'Keefe KM, LaViolette PS, DeLuca AN, Blacker D, Dickerson BC et al. Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology 2010; 74: 1969–1976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marchetti C, Marie H . Hippocampal synaptic plasticity in Alzheimer's disease: what have we learned so far from transgenic models? Rev Neurosci 2011; 22: 373–402.

    Article  CAS  PubMed  Google Scholar 

  11. Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proc Natl Acad Sci USA 2004; 101: 284–289.

    Article  CAS  PubMed  Google Scholar 

  12. Sperling RA, Laviolette PS, O'Keefe K, O'Brien J, Rentz DM, Pihlajamaki M et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 2009; 63: 178–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roy DS, Arons A, Mitchell TI, Pignatelli M, Ryan TJ, Tonegawa S . Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease. Nature 2016; 531: 508–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Swaab DF, Bao AM . (Re-)activation of neurons in aging and dementia: lessons from the hypothalamus. Exp Gerontol 2010; 46: 178–184.

    Article  PubMed  Google Scholar 

  15. Tampellini D . Synaptic activity and Alzheimer's disease: a critical update. Front Neurosci 2015; 9: 423.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bas-Orth C, Bading H . The divergence-convergence model of acquired neuroprotection. Mech Dev 2013; 130: 396–401.

    Article  CAS  PubMed  Google Scholar 

  17. Ramirez AE, Pacheco CR, Aguayo LG, Opazo CM . Rapamycin protects against Abeta-induced synaptotoxicity by increasing presynaptic activity in hippocampal neurons. Biochim Biophys Acta 2014; 1842: 1495–1501.

    Article  CAS  PubMed  Google Scholar 

  18. Rangaraju V, Calloway N, Ryan TA . Activity-driven local ATP synthesis is required for synaptic function. Cell 2014; 156: 825–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith GS, Laxton AW, Tang-Wai DF, McAndrews MP, Diaconescu AO, Workman CI et al. Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease. Arch Neurol 2012; 69: 1141–1148.

    Article  PubMed  Google Scholar 

  20. Sankar T, Chakravarty MM, Bescos A, Lara M, Obuchi T, Laxton AW et al. Deep brain stimulation influences brain structure in Alzheimer's disease. Brain Stimul 2015; 8: 645–654.

    Article  PubMed  Google Scholar 

  21. Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC et al. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 2005; 48: 913–922.

    Article  CAS  PubMed  Google Scholar 

  22. Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T et al. APP processing and synaptic function. Neuron 2003; 37: 925–937.

    Article  CAS  PubMed  Google Scholar 

  23. Tampellini D, Gouras GK . Synapses, synaptic activity and intraneuronal Abeta in Alzheimer's disease. Front Aging Neurosci 2010; 2: 1–5.

    Google Scholar 

  24. Tampellini D, Rahman N, Gallo EF, Huang Z, Dumont M, Capetillo-Zarate E et al. Synaptic activity reduces intraneuronal Abeta, promotes APP transport to synapses, and protects against Abeta-related synaptic alterations. J Neurosci 2009; 29: 9704–9713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tampellini D, Capetillo-Zarate E, Dumont M, Huang Z, Yu F, Lin MT et al. Effects of synaptic modulation on {beta}-amyloid, synaptophysin, and memory performance in Alzheimer's disease transgenic mice. J Neurosci 2010; 30: 14299–14304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tampellini D, Rahman N, Lin MT, Capetillo-Zarate E, Gouras GK . Impaired beta-amyloid secretion in Alzheimer's disease pathogenesis. J Neurosci 2011; 31: 15384–15390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP . Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 2013; 14: 389–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamada K, Holth JK, Liao F, Stewart FR, Mahan TE, Jiang H et al. Neuronal activity regulates extracellular tau in vivo. J Exp Med 2014; 211: 387–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frandemiche ML, De Seranno S, Rush T, Borel E, Elie A, Arnal I et al. Activity-dependent tau protein translocation to excitatory synapse is disrupted by exposure to amyloid-beta oligomers. J Neurosci 2014; 34: 6084–6097.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stone SS, Teixeira CM, Devito LM, Zaslavsky K, Josselyn SA, Lozano AM et al. Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J Neurosci 2011; 31: 13469–13484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wong-Riley MT, Welt C . Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. Proc Natl Acad Sci USA 1980; 77: 2333–2337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 2003; 39: 409–421.

    Article  CAS  PubMed  Google Scholar 

  33. Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 2007; 53: 337–351.

    Article  CAS  PubMed  Google Scholar 

  34. Tampellini D, Magrane J, Takahashi RH, Li F, Lin MT, Almeida CG et al. Internalized antibodies to the Abeta domain of APP reduce neuronal Abeta and protect against synaptic alterations. J Biol Chem 2007; 282: 18895–18906.

    Article  CAS  PubMed  Google Scholar 

  35. Almeida CG, Tampellini D, Takahashi RH, Greengard P, Lin MT, Snyder EM et al. Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiol Dis 2005; 20: 187–198.

    Article  CAS  PubMed  Google Scholar 

  36. Revilla S, Sunol C, Garcia-Mesa Y, Gimenez-Llort L, Sanfeliu C, Cristofol R . Physical exercise improves synaptic dysfunction and recovers the loss of survival factors in 3xTg-AD mouse brain. Neuropharmacology 2014; 81: 55–63.

    Article  CAS  PubMed  Google Scholar 

  37. Lu W, Man H, Ju W, Trimble WS, MacDonald JF, Wang YT . Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 2001; 29: 243–254.

    Article  CAS  PubMed  Google Scholar 

  38. Bingol B, Schuman EM . Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 2006; 441: 1144–1148.

    Article  CAS  PubMed  Google Scholar 

  39. Chesser AS, Pritchard SM, Johnson GV . Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front Neurol 2013; 4: 122.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee MJ, Lee JH, Rubinsztein DC . Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog Neurobiol 2013; 105: 49–59.

    Article  CAS  PubMed  Google Scholar 

  41. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S . Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem 2010; 285: 13107–13120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M . Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 2012; 135 (Pt 7): 2169–2177.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kuusisto E, Salminen A, Alafuzoff I . Early accumulation of p62 in neurofibrillary tangles in Alzheimer's disease: possible role in tangle formation. Neuropathol Appl Neurobiol 2002; 28: 228–237.

    Article  CAS  PubMed  Google Scholar 

  44. Ramesh Babu J, Lamar Seibenhener M, Peng J, Strom AL, Kemppainen R, Cox N et al. Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J Neurochem 2008; 106: 107–120.

    Article  CAS  PubMed  Google Scholar 

  45. Su H, Wang X . p62 Stages an interplay between the ubiquitin-proteasome system and autophagy in the heart of defense against proteotoxic stress. Trends Cardiovasc Med 2011; 21: 224–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA . Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer's disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 2000; 157: 277–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ihara Y, Morishima-Kawashima M, Nixon R . The ubiquitin-proteasome system and the autophagic-lysosomal system in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2: 2–27.

    Article  Google Scholar 

  48. Maxfield FR . Role of endosomes and lysosomes in human disease. Cold Spring Harb Perspect Biol 2014; 6: a016931.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nixon RA, Yang DS . Autophagy failure in Alzheimer's disease—locating the primary defect. Neurobiol Dis 2011; 43: 38–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hamano T, Gendron TF, Causevic E, Yen SH, Lin WL, Isidoro C et al. Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci 2008; 27: 1119–1130.

    Article  PubMed  Google Scholar 

  51. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A et al. Guidelines for the use and interpretation of assays for monitoring autophagy(3rd edition). Autophagy 2016; 12: 1–222.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Maeda S, Sahara N, Saito Y, Murayama S, Ikai A, Takashima A . Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer's disease. Neurosci Res 2006; 54: 197–201.

    Article  CAS  PubMed  Google Scholar 

  53. Brunden KR, Trojanowski JQ, Lee VM . Evidence that non-fibrillar tau causes pathology linked to neurodegeneration and behavioral impairments. J Alzheimers Dis 2008; 14: 393–399.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Marx J . Alzheimer's disease. A new take on tau. Science 2007; 316: 1416–1417.

    Article  CAS  PubMed  Google Scholar 

  55. Schaeffer V, Goedert M . Stimulation of autophagy is neuroprotective in a mouse model of human tauopathy. Autophagy 2012; 8: 1686–1687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Caccamo A, Ferreira E, Branca C, Oddo S . p62 improves AD-like pathology by increasing autophagy. Mol Psychiatry 2016; 30: 1–9.

    Google Scholar 

  57. Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 2017; 93: 1015–1034.

    Article  CAS  PubMed  Google Scholar 

  58. Ditaranto K, Tekirian TL, Yang AJ . Lysosomal membrane damage in soluble Abeta-mediated cell death in Alzheimer's disease. Neurobiol Dis 2001; 8: 19–31.

    Article  CAS  PubMed  Google Scholar 

  59. Sambri I, D'Alessio R, Ezhova Y, Giuliano T, Sorrentino NC, Cacace V et al. Lysosomal dysfunction disrupts presynaptic maintenance and restoration of presynaptic function prevents neurodegeneration in lysosomal storage diseases. EMBO Mol Med 2017; 9: 112–132.

    Article  CAS  PubMed  Google Scholar 

  60. Polito VA, Li H, Martini-Stoica H, Wang B, Yang L, Xu Y et al. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol Med 2014; 6: 1142–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 2015; 17: 288–299.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM et al. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 2009; 18: 4153–4170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McPherson PS . Eating locally: microautophagy and protein turnover at the synapse. Neuron 2015; 88: 619–621.

    Article  CAS  PubMed  Google Scholar 

  64. Uytterhoeven V, Lauwers E, Maes I, Miskiewicz K, Melo MN, Swerts J et al. Hsc70-4 deforms membranes to promote synaptic protein turnover by endosomal microautophagy. Neuron 2015; 88: 735–748.

    Article  CAS  PubMed  Google Scholar 

  65. Maday S, Wallace KE, Holzbaur EL . Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 2012; 196: 407–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Medina DL, Fraldi A, Bouche V, Annunziata F, Mansueto G, Spampanato C et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell 2011; 21: 421–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A, Rilett K et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci 2016; 19: 1085–1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stargardt A, Swaab DF, Bossers K . The storm before the quiet: neuronal hyperactivity and Abeta in the presymptomatic stages of Alzheimer's disease. Neurobiol Aging 2015; 36: 1–11.

    Article  CAS  PubMed  Google Scholar 

  69. Elman JA, Oh H, Madison CM, Baker SL, Vogel JW, Marks SM et al. Neural compensation in older people with brain amyloid-beta deposition. Nat Neurosci 2014; 17: 1316–1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stern Y . Cognitive reserve and Alzheimer disease. Alzheimer Dis Assoc Disord 2006; 20 (3 Suppl 2): S69–S74.

    Article  PubMed  Google Scholar 

  71. Stern Y, Gurland B, Tatemichi TK, Tang MX, Wilder D, Mayeux R . Influence of education and occupation on the incidence of Alzheimer's disease. JAMA 1994; 271: 1004–1010.

    Article  CAS  PubMed  Google Scholar 

  72. Pizzolato G, Mandat T . Deep brain stimulation for movement disorders. Front Integr Neurosci 2012; 6: 1–5.

    Article  Google Scholar 

  73. Ponce FA, Asaad WF, Foote KD, Anderson WS, Rees Cosgrove G, Baltuch GH et al. Bilateral deep brain stimulation of the fornix for Alzheimer's disease: surgical safety in the ADvance trial. J Neurosurg 2016; 125: 75–84.

    Article  PubMed  Google Scholar 

  74. Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, Keren R et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease. Ann Neurol 2010; 68: 521–534.

    Article  CAS  PubMed  Google Scholar 

  75. Lozano AM, Fosdick L, Chakravarty MM, Leoutsakos JM, Munro C, Oh E et al. A phase II study of fornix deep brain stimulation in mild Alzheimer's disease. J Alzheimers Dis 2016; 54: 777–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Flint Beal and Ms Shari Jainuddin for providing the PS19 model; Dr Rakez Kayed for providing the T22 antibody; Dr Magali Dumont for her help in the animal protocol preparation; Dr Benoit Delatour and Dr Ihsen Youssef for helping with mouse perfusions; Dr Annick Prigent and the ICM histology facility team for helping with the cytochrome oxidase staining; and Dr Lydia Danglot for the Icy software training. In vivo studies were performed at the PHENO-ICMice Core Facility with the help of Dr Nadège Sarrazin, Dr Magali Dumont and Ms Béatrice Moreau; the Core is supported by the ‘Investissements d'avenir’ ANR-10- IAIHU-06 and ANR-11-INBS-0011-NeurATRIS, and by the ‘Fondation pour la Recherche Médicale’. CIBERNED and grants from the Ministerio de Economía y Competitividad (SAF2013-45084-R), Govierno Vasco, Ikerbasque and Universidad del País Vasco UPV/EHU to EC, EA and CM. This study was possible by the support of Institut Professeur Baulieu to YA and DT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Akwa, E E Baulieu or D Tampellini.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akwa, Y., Gondard, E., Mann, A. et al. Synaptic activity protects against AD and FTD-like pathology via autophagic-lysosomal degradation. Mol Psychiatry 23, 1530–1540 (2018). https://doi.org/10.1038/mp.2017.142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.142

This article is cited by

Search

Quick links