Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptome sequencing implicates dorsal striatum-specific gene network, immune response and energy metabolism pathways in bipolar disorder

Abstract

Bipolar disorder (BD) is a highly heritable and heterogeneous mental illness whose manifestations often include impulsive and risk-taking behavior. This particular phenotype suggests that abnormal striatal function could be involved in BD etiology, yet most transcriptomic studies of this disorder have concentrated on cortical brain regions. We believe we report the first transcriptome sequencing of the postmortem human dorsal striatum comparing bipolar (18) and control (17) subjects. Fourteen genes were detected as differentially expressed at a 5% false discovery rate, including a few immune response genes such as NLRC5, S100A12, LILRA4 and FCGBP, as well as an assortment of non-protein coding genes. Functional pathway analysis found an enrichment of upregulated genes across many immune/inflammation pathways and an enrichment of downregulated genes among oxidative phosphorylation pathways. Co-expression network analysis revealed 20 modules of highly interconnected genes; two of the modules were significantly enriched for BD susceptibility single-nucleotide polymorphisms deriving from a large genome-wide association study data set. Remarkably, the module with the highest genetic association signal for BD, which contained many genes from signaling pathways, was also enriched in markers characteristic of gene expression in dorsal striatum medium spiny neurons—unlike most other modules, which showed no such regional and neuronal specificity. These findings draw a link between BD etiology at the gene level and a specific brain region, and highlight striatal signaling pathways as potential targets for the development of novel treatments to manage BD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Merikangas KR, Jin R, He JP, Kessler RC, Lee S, Sampson NA et al. Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry 2011; 68: 241–251.

    Article  Google Scholar 

  2. Moeller FG, Barratt ES, Dougherty DM, Schmitz JM, Swann AC . Psychiatric aspects of impulsivity. Am J Psychiatry 2001; 158: 1783–1793.

    Article  CAS  Google Scholar 

  3. Strakowski SM, Fleck DE, DelBello MP, Adler CM, Shear PK, McElroy SL et al. Characterizing impulsivity in mania. Bipolar Disord 2009; 11: 41–51.

    Article  Google Scholar 

  4. Alloy LB, Nusslock R, Boland EM . The development and course of bipolar spectrum disorders: an integrated reward and circadian rhythm dysregulation model. Ann Rev Clin Psychol 2015; 11: 213–250.

    Article  Google Scholar 

  5. Balleine BW, Delgado MR, Hikosaka O . The role of the dorsal striatum in reward and decision-making. J Neurosci 2007; 27: 8161–8165.

    Article  CAS  Google Scholar 

  6. Yanike M, Ferrera VP . Representation of outcome risk and action in the anterior caudate nucleus. J Neurosci 2014; 34: 3279–3290.

    Article  CAS  Google Scholar 

  7. Aylward EH, Roberts-Twillie JV, Barta PE, Kumar AJ, Harris GJ, Geer M et al. Basal ganglia volumes and white matter hyperintensities in patients with bipolar disorder. Am J Psychiatry 1994; 151: 687–693.

    Article  CAS  Google Scholar 

  8. Strakowski SM, DelBello MP, Sax KW, Zimmerman ME, Shear PK, Hawkins JM et al. Brain magnetic resonance imaging of structural abnormalities in bipolar disorder. Arch Gen Psychiatry 1999; 56: 254–260.

    Article  CAS  Google Scholar 

  9. Blumberg HP, Martin A, Kaufman J, Leung HC, Skudlarski P, Lacadie C et al. Frontostriatal abnormalities in adolescents with bipolar disorder: preliminary observations from functional MRI. Am J Psychiatry 2003; 160: 1345–1347.

    Article  Google Scholar 

  10. O'Connell RA, Van Heertum RL, Luck D, Yudd AP, Cueva JE, Billick SB et al. Single-photon emission computed tomography of the brain in acute mania and schizophrenia. J Neuroimaging 1995; 5: 101–104.

    Article  CAS  Google Scholar 

  11. Wessa M, Houenou J, Paillere-Martinot ML, Berthoz S, Artiges E, Leboyer M et al. Fronto-striatal overactivation in euthymic bipolar patients during an emotional go/nogo task. Am J Psychiatry 2007; 164: 638–646.

    Article  Google Scholar 

  12. Anand A, Barkay G, Dzemidzic M, Albrecht D, Karne H, Zheng QH et al. Striatal dopamine transporter availability in unmedicated bipolar disorder. Bipolar Disord 2011; 13: 406–413.

    Article  Google Scholar 

  13. Bertelsen A, Harvald B, Hauge M . A Danish twin study of manic-depressive disorders. Br J Psychiatry 1977; 130: 330–351.

    Article  CAS  Google Scholar 

  14. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009; 373: 234–239.

    Article  CAS  Google Scholar 

  15. McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A . The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry 2003; 60: 497–502.

    Article  Google Scholar 

  16. Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2008; 13: 197–207.

    Article  CAS  Google Scholar 

  17. Cross-Disorder Group of the Psychiatric Genomics C, Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 2013; 45: 984–994.

    Article  Google Scholar 

  18. Lee SH, Wray NR, Goddard ME, Visscher PM . Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet 2011; 88: 294–305.

    Article  Google Scholar 

  19. Psychiatric GCBDWG. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 2011; 43: 977–983.

    Article  Google Scholar 

  20. Akula N, Barb J, Jiang X, Wendland JR, Choi KH, Sen SK et al. RNA-sequencing of the brain transcriptome implicates dysregulation of neuroplasticity, circadian rhythms and GTPase binding in bipolar disorder. Mol Psychiatry 2014; 19: 1179–1185.

    Article  CAS  Google Scholar 

  21. Seifuddin F, Pirooznia M, Judy JT, Goes FS, Potash JB, Zandi PP . Systematic review of genome-wide gene expression studies of bipolar disorder. BMC Psychiatry 2013; 13: 213.

    Article  Google Scholar 

  22. Zhao Z, Xu J, Chen J, Kim S, Reimers M, Bacanu SA et al. Transcriptome sequencing and genome-wide association analyses reveal lysosomal function and actin cytoskeleton remodeling in schizophrenia and bipolar disorder. Mol Psychiatry 2014.

  23. Langmead B, Salzberg SL . Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9: 357–359.

    Article  CAS  Google Scholar 

  24. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL . TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013; 14: R36.

    Article  Google Scholar 

  25. Anders S, Pyl PT, Huber W . HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 2015; 31: 166–169.

    Article  CAS  Google Scholar 

  26. Wang L, Wang S, Li W . RSeQC: quality control of RNA-seq experiments. Bioinformatics 2012; 28: 2184–2185.

    Article  CAS  Google Scholar 

  27. Love MI, Huber W, Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15: 550.

    Article  Google Scholar 

  28. Langfelder P, Horvath S . WGCNA: an R package for weighted correlation network analysis. BMC BIoinformatics 2008; 9: 559.

    Article  Google Scholar 

  29. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  Google Scholar 

  30. Xiong Q, Mukherjee S, Furey TS . GSAASeqSP: a toolset for gene set association analysis of RNA-Seq data. Sci Rep 2014; 4: 6347.

    Article  CAS  Google Scholar 

  31. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z . GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 2009; 10: 48.

    Article  Google Scholar 

  32. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011; 474: 380–384.

    Article  CAS  Google Scholar 

  33. Wang K, Li M, Bucan M . Pathway-based approaches for analysis of genomewide association studies. Am J Hum Genet 2007; 81: 1278–1283.

    Article  CAS  Google Scholar 

  34. Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet 2014; 46: 1173–1186.

    Article  CAS  Google Scholar 

  35. Dougherty JD, Schmidt EF, Nakajima M, Heintz N . Analytical approaches to RNA profiling data for the identification of genes enriched in specific cells. Nucleic Acids Res 2010; 38: 4218–4230.

    Article  CAS  Google Scholar 

  36. Xu X, Wells AB, O'Brien DR, Nehorai A, Dougherty JD . Cell type-specific expression analysis to identify putative cellular mechanisms for neurogenetic disorders. J Neurosci 2014; 34: 1420–1431.

    Article  CAS  Google Scholar 

  37. Zhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou CM . Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics 2014; 15: 419.

    Article  Google Scholar 

  38. Cui P, Lin Q, Ding F, Xin C, Gong W, Zhang L et al. A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing. Genomics 2010; 96: 259–265.

    Article  CAS  Google Scholar 

  39. Sigurgeirsson B, Emanuelsson O, Lundeberg J . Sequencing degraded RNA addressed by 3' tag counting. PloS One 2014; 9: e91851.

    Article  Google Scholar 

  40. Bergen SE, O'Dushlaine CT, Ripke S, Lee PH, Ruderfer DM, Akterin S et al. Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Mol Psychiatry 2012; 17: 880–886.

    Article  CAS  Google Scholar 

  41. Meissner TB, Li A, Biswas A, Lee KH, Liu YJ, Bayir E et al. NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci USA 2010; 107: 13794–13799.

    Article  CAS  Google Scholar 

  42. Iavarone F, Melis M, Platania G, Cabras T, Manconi B, Petruzzelli R et al. Characterization of salivary proteins of schizophrenic and bipolar disorder patients by top-down proteomics. J Proteomics 2014; 103: 15–22.

    Article  CAS  Google Scholar 

  43. Kim JY, So KJ, Lee S, Park JH . Bcl-rambo induces apoptosis via interaction with the adenine nucleotide translocator. FEBS Lett 2012; 586: 3142–3149.

    Article  CAS  Google Scholar 

  44. Lowthert L, Leffert J, Lin A, Umlauf S, Maloney K, Muralidharan A et al. Increased ratio of anti-apoptotic to pro-apoptotic Bcl2 gene-family members in lithium-responders one month after treatment initiation. Biol Mood Anxiety Disord 2012; 2: 15.

    Article  CAS  Google Scholar 

  45. Altar CA, Vawter MP, Ginsberg SD . Target identification for CNS diseases by transcriptional profiling. Neuropsychopharmacology 2009; 34: 18–54.

    Article  CAS  Google Scholar 

  46. Konradi C, Sillivan SE, Clay HB . Mitochondria, oligodendrocytes and inflammation in bipolar disorder: evidence from transcriptome studies points to intriguing parallels with multiple sclerosis. Neurobiol Dis 2012; 45: 37–47.

    Article  CAS  Google Scholar 

  47. Hakobyan S, Boyajyan A, Sim RB . Classical pathway complement activity in schizophrenia. Neurosci Lett 2005; 374: 35–37.

    Article  CAS  Google Scholar 

  48. McKernan DP, Dennison U, Gaszner G, Cryan JF, Dinan TG . Enhanced peripheral toll-like receptor responses in psychosis: further evidence of a pro-inflammatory phenotype. Transl Psychiatry 2011; 1: e36.

    Article  CAS  Google Scholar 

  49. Andreassen OA, Harbo HF, Wang Y, Thompson WK, Schork AJ, Mattingsdal M et al. Genetic pleiotropy between multiple sclerosis and schizophrenia but not bipolar disorder: differential involvement of immune-related gene loci. Mol Psychiatry 2015; 20: 207–214.

    Article  CAS  Google Scholar 

  50. Network, Pathway Analysis Subgroup of Psychiatric Genomics C. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci 2015; 18: 199–209.

    Article  Google Scholar 

  51. Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 2011; 35: 804–817.

    Article  CAS  Google Scholar 

  52. Mendlewicz J, Kriwin P, Oswald P, Souery D, Alboni S, Brunello N . Shortened onset of action of antidepressants in major depression using acetylsalicylic acid augmentation: a pilot open-label study. Int Clin Psychopharmacol 2006; 21: 227–231.

    Article  Google Scholar 

  53. Nery FG, Monkul ES, Hatch JP, Fonseca M, Zunta-Soares GB, Frey BN et al. Celecoxib as an adjunct in the treatment of depressive or mixed episodes of bipolar disorder: a double-blind, randomized, placebo-controlled study. Hum Psychopharmacol 2008; 23: 87–94.

    Article  CAS  Google Scholar 

  54. Kaalund SS, Newburn EN, Ye T, Tao R, Li C, Deep-Soboslay A et al. Contrasting changes in DRD1 and DRD2 splice variant expression in schizophrenia and affective disorders, and associations with SNPs in postmortem brain. Mol Psychiatry 2014; 19: 1258–1266.

    Article  CAS  Google Scholar 

  55. Pissadaki EK, Bolam JP . The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson's disease. Front Comput Neurosci 2013; 7: 13.

    Article  Google Scholar 

  56. Saxena S, Caroni P . Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 2011; 71: 35–48.

    Article  CAS  Google Scholar 

  57. Moskvina V, Craddock N, Holmans P, Nikolov I, Pahwa JS, Green E et al. Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Mol Psychiatry 2009; 14: 252–260.

    Article  CAS  Google Scholar 

  58. Caporaso GL, Bibb JA, Snyder GL, Valle C, Rakhilin S, Fienberg AA et al. Drugs of abuse modulate the phosphorylation of ARPP-21, a cyclic AMP-regulated phosphoprotein enriched in the basal ganglia. Neuropharmacology 2000; 39: 1637–1644.

    Article  CAS  Google Scholar 

  59. Wada A, Kunii Y, Ikemoto K, Yang Q, Hino M, Matsumoto J et al. Increased ratio of calcineurin immunoreactive neurons in the caudate nucleus of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37: 8–14.

    Article  CAS  Google Scholar 

  60. Tardito D, Tiraboschi E, Kasahara J, Racagni G, Popoli M . Reduced CREB phosphorylation after chronic lithium treatment is associated with down-regulation of CaM kinase IV in rat hippocampus. Int J Neuropsychopharmacol 2007; 10: 491–496.

    Article  CAS  Google Scholar 

  61. Scott LJ, Muglia P, Kong XQ, Guan W, Flickinger M, Upmanyu R et al. Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proc Natl Acad Sci USA 2009; 106: 7501–7506.

    Article  CAS  Google Scholar 

  62. Tang B, Dean B, Thomas EA . Disease- and age-related changes in histone acetylation at gene promoters in psychiatric disorders. Transl Psychiatry 2011; 1: e64.

    Article  CAS  Google Scholar 

  63. Kerner B, Lambert CG, Muthen BO . Genome-wide association study in bipolar patients stratified by co-morbidity. PloS One 2011; 6: e28477.

    Article  CAS  Google Scholar 

  64. McDonald ML, MacMullen C, Liu DJ, Leal SM, Davis RL . Genetic association of cyclic AMP signaling genes with bipolar disorder. Transl Psychiatry 2012; 2: e169.

    Article  CAS  Google Scholar 

  65. Nurnberger JI Jr, Koller DL, Jung J, Edenberg HJ, Foroud T, Guella I et al. Identification of pathways for bipolar disorder: a meta-analysis. JAMA Psychiatry 2014; 71: 657–664.

    Article  CAS  Google Scholar 

  66. Redlich R, Dohm K, Grotegerd D, Opel N, Zwitserlood P, Heindel W et al. Reward Processing in Unipolar and Bipolar Depression: A Functional MRI Study. Neuropsychopharmacology 2015; 40: 2623–2631.

    Article  Google Scholar 

  67. Yip SW, Worhunsky PD, Rogers RD, Goodwin GM . Hypoactivation of the ventral and dorsal striatum during reward and loss anticipation in antipsychotic and mood stabilizer-naive bipolar disorder. Neuropsychopharmacology 2015; 40: 658–666.

    Article  CAS  Google Scholar 

  68. Seo M, Lee E, Averbeck BB . Action selection and action value in frontal-striatal circuits. Neuron 2012; 74: 947–960.

    Article  CAS  Google Scholar 

  69. Tai LH, Lee AM, Benavidez N, Bonci A, Wilbrecht L . Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat Neurosci 2012; 15: 1281–1289.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Harvard Brain Tissue Resource Center (Belmont, MA) for the donated postmortem striatum samples, the Next Generation Sequencing core at Scripps California (La Jolla, CA) for generating and sequencing cDNA libraries, Mohammad Fallahi for assistance with processing of raw data, and Drs Baoji Xu and Kirill Martemyanov for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R L Davis.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacifico, R., Davis, R. Transcriptome sequencing implicates dorsal striatum-specific gene network, immune response and energy metabolism pathways in bipolar disorder. Mol Psychiatry 22, 441–449 (2017). https://doi.org/10.1038/mp.2016.94

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.94

This article is cited by

Search

Quick links