Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Conditional ablation of neuroligin-1 in CA1 pyramidal neurons blocks LTP by a cell-autonomous NMDA receptor-independent mechanism

Abstract

Neuroligins are postsynaptic cell-adhesion molecules implicated in autism and other neuropsychiatric disorders. Despite extensive work, the role of neuroligins in synapse function and plasticity, especially N-methyl-d-aspartate (NMDA) receptor (NMDAR)-dependent long-term potentiation (LTP), remains unclear. To establish which synaptic functions unequivocally require neuroligins, we analyzed single and triple conditional knockout (cKO) mice for all three major neuroligin isoforms (NL1–NL3). We inactivated neuroligins by stereotactic viral expression of Cre-recombinase in hippocampal CA1 region pyramidal neurons at postnatal day 0 (P0) or day 21 (P21) and measured synaptic function, synaptic plasticity and spine numbers in acute hippocampal slices 2–3 weeks later. Surprisingly, we find that ablation of neuroligins in newborn or juvenile mice only modestly impaired basal synaptic function in hippocampus and caused no alteration in postsynaptic spine numbers. However, triple cKO of NL1–NL3 or single cKO of NL1 impaired NMDAR-mediated excitatory postsynaptic currents and abolished NMDAR-dependent LTP. Strikingly, the NL1 cKO also abolished LTP elicited by activation of L-type Ca2+-channels during blockade of NMDARs. These findings demonstrate that neuroligins are generally not essential for synapse formation in CA1 pyramidal neurons but shape synaptic properties and that NL1 specifically is required for LTP induced by postsynaptic Ca2+-elevations, a function which may contribute to the pathophysiological role of neuroligins in brain disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Sudhof TC . Neuroligins and neurexins link synaptic function to cognitive disease. Nature 2008; 455: 903–911.

    Article  Google Scholar 

  2. Hu X, Luo J-h Xu J . The interplay between synaptic activity and neuroligin function in the CNS. Biomed Res Int 2015; 2015: 13.

    Google Scholar 

  3. Bang M, Owczarek S . A matter of balance: role of neurexin and neuroligin at the synapse. Neurochem Res 2013; 38: 1174–1189.

    Article  CAS  Google Scholar 

  4. Huguet G, Ey E, Bourgeron T . The genetic landscapes of autism spectrum disorders. Annu Rev Genomics Hum Genet 2013; 14: 191–213.

    Article  CAS  Google Scholar 

  5. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003; 34: 27–29.

    Article  CAS  Google Scholar 

  6. Feng J, Schroer R, Yan J, Song W, Yang C, Bockholt A et al. High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neurosci Lett 2006; 409: 10–13.

    Article  CAS  Google Scholar 

  7. Soler-Llavina GJ, Fuccillo MV, Ko J, Sudhof TC, Malenka RC . The neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo. Proc Natl Acad Sci USA 2011; 108: 16502–16509.

    Article  CAS  Google Scholar 

  8. Liang J, Xu W, Hsu YT, Yee AX, Chen L, Sudhof TC . Conditional neuroligin-2 knockout in adult medial prefrontal cortex links chronic changes in synaptic inhibition to cognitive impairments. Mol Psychiatry 2015; 20: 850–859.

    Article  CAS  Google Scholar 

  9. Zhang B, Chen L, Liu X, Maxeiner S, Lee SJ, Gokce O et al. Neuroligins sculpt cerebellar Purkinje-cell circuits by differential control of distinct classes of synapses. Neuron 2015; 87: 781–796.

    Article  CAS  Google Scholar 

  10. Rothwell PE, Fuccillo MV, Maxeiner S, Hayton SJ, Gokce O, Lim BK et al. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell 2014; 158: 198–212.

    Article  CAS  Google Scholar 

  11. Song J-Y, Ichtchenko K, Südhof TC, Brose N . Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci USA 1999; 96: 1100–1105.

    Article  CAS  Google Scholar 

  12. Poulopoulos A, Aramuni G, Meyer G, Soykan T, Hoon M, Papadopoulos T et al. Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 2009; 63: 628–642.

    Article  CAS  Google Scholar 

  13. Takacs VT, Freund TF, Nyiri G . Neuroligin 2 is expressed in synapses established by cholinergic cells in the mouse brain. PLoS One 2013; 8: e72450.

    Article  CAS  Google Scholar 

  14. Budreck EC, Scheiffele P . Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur J Neurosci 2007; 26: 1738–1748.

    Article  Google Scholar 

  15. Hoon M, Soykan T, Falkenburger B, Hammer M, Patrizi A, Schmidt K-F et al. Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc Natl Acad Sci USA 2011; 108: 3053–3058.

    Article  CAS  Google Scholar 

  16. Cohen AS, Lin DD, Coulter DA . Protracted postnatal development of inhibitory synaptic transmission in rat hippocampal area CA1 neurons. J Neurophysiol 2000; 84: 2465–2476.

    Article  CAS  Google Scholar 

  17. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011; 333: 1456–1458.

    Article  CAS  Google Scholar 

  18. Xu W, Morishita W, Buckmaster PS, Pang ZP, Malenka RC, Sudhof TC . Distinct neuronal coding schemes in memory revealed by selective erasure of fast synchronous synaptic transmission. Neuron 2012; 73: 990–1001.

    Article  CAS  Google Scholar 

  19. Kaeser PS, Deng L, Wang Y, Dulubova I, Liu X, Rizo J et al. RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 2011; 144: 282–295.

    Article  CAS  Google Scholar 

  20. Ahmad M, Polepalli JS, Goswami D, Yang X, Kaeser-Woo YJ, Sudhof TC et al. Postsynaptic complexin controls AMPA receptor exocytosis during LTP. Neuron 2012; 73: 260–267.

    Article  CAS  Google Scholar 

  21. Skrede KK, Westgaard RH . The transverse hippocampal slice: a well-defined cortical structure maintained in vitro. Brain Res 1971; 35: 589–593.

    Article  CAS  Google Scholar 

  22. Kato HK, Watabe AM, Manabe T . Non-Hebbian synaptic plasticity induced by repetitive postsynaptic action potentials. J Neurosci 2009; 29: 11153–11160.

    Article  CAS  Google Scholar 

  23. Kim J, Jung SY, Lee YK, Park S, Choi JS, Lee CJ et al. Neuroligin-1 is required for normal expression of LTP and associative fear memory in the amygdala of adult animals. Proc Natl Acad Sci USA 2008; 105: 9087–9092.

    Article  CAS  Google Scholar 

  24. Chubykin AA, Atasoy D, Etherton MR, Brose N, Kavalali ET, Gibson JR et al. Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 2007; 54: 919–931.

    Article  CAS  Google Scholar 

  25. Jung SY, Kim J, Kwon OB, Jung JH, An K, Jeong AY et al. Input-specific synaptic plasticity in the amygdala is regulated by neuroligin-1 via postsynaptic NMDA receptors. Proc Natl Acad Sci USA 2010; 107: 4710–4715.

    Article  CAS  Google Scholar 

  26. Shipman SL, Schnell E, Hirai T, Chen BS, Roche KW, Nicoll RA . Functional dependence of neuroligin on a new non-PDZ intracellular domain. Nat Neurosci 2011; 14: 718–726.

    Article  CAS  Google Scholar 

  27. Shipman SL, Nicoll RA . A subtype-specific function for the extracellular domain of neuroligin 1 in hippocampal LTP. Neuron 2012; 76: 309–316.

    Article  CAS  Google Scholar 

  28. Etherton M, Foldy C, Sharma M, Tabuchi K, Liu X, Shamloo M et al. Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc Natl Acad Sci USA 2011; 108: 13764–13769.

    Article  CAS  Google Scholar 

  29. Zucker RS, Regehr WG . Short-term synaptic plasticity. Annu Rev Physiol 2002; 64: 355–405.

    Article  CAS  Google Scholar 

  30. Blundell J, Blaiss CA, Etherton MR, Espinosa F, Tabuchi K, Walz C et al. Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J Neurosci 2010; 30: 2115–2129.

    Article  CAS  Google Scholar 

  31. Budreck EC, Kwon O-H, Jung JH, Baudouin S, Thommen A, Kim H-S et al. Neuroligin-1 controls synaptic abundance of NMDA-type glutamate receptors through extracellular coupling. Proc Natl Acad Sci USA 2011; 110: 725–730.

    Article  Google Scholar 

  32. Wyllie DJ, Nicoll RA . A role for protein kinases and phosphatases in the Ca2+-induced enhancement of hippocampal AMPA receptor-mediated synaptic responses. Neuron 1994; 13: 635–643.

    Article  CAS  Google Scholar 

  33. Kullmann DM, Perkel DJ, Manabe T, Nicoll RA . Ca2+ entry via postsynaptic voltage-sensitive Ca2+ channels can transiently potentiate excitatory synaptic transmission in the hippocampus. Neuron 1992; 9: 1175–1183.

    Article  CAS  Google Scholar 

  34. Lledo P-M, Zhang X, Sudhof TC, Malenka RC, Nicoll RA . Postsynaptic membrane fusion and long-term potentiation. Science 1998; 279: 399–403.

    Article  CAS  Google Scholar 

  35. Jurado S, Goswami D, Zhang Y, Molina AJ, Sudhof TC, Malenka RC . LTP requires a unique postsynaptic SNARE fusion machinery. Neuron 2013; 77: 542–558.

    Article  CAS  Google Scholar 

  36. Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K et al. Neuroligins determine synapse maturation and function. Neuron 2006; 51: 741–754.

    Article  CAS  Google Scholar 

  37. Fu Z, Vicini S . Neuroligin-2 accelerates GABAergic synapse maturation in cerebellar granule cells. Mol Cell Neurosci 2009; 42: 45–55.

    Article  CAS  Google Scholar 

  38. Hines RM, Wu L, Hines DJ, Steenland H, Mansour S, Dahlhaus R et al. Synaptic imbalance, stereotypies, and impaired social interactions in mice with altered neuroligin 2 expression. J Neurosci 2008; 28: 6055–6067.

    Article  CAS  Google Scholar 

  39. Jedlicka P, Hoon M, Papadopoulos T, Vlachos A, Winkels R, Poulopoulos A et al. Increased dentate gyrus excitability in neuroligin-2-deficient mice in vivo. Cereb Cortex 2011; 21: 357–367.

    Article  Google Scholar 

  40. Gibson JR, Huber KM, Sudhof TC . Neuroligin-2 deletion selectively decreases inhibitory synaptic transmission originating from fast-spiking but not from somatostatin-positive interneurons. J Neurosci 2009; 29: 13883–13897.

    Article  CAS  Google Scholar 

  41. Irie M, Hata Y, Takeuchi M, Ichtchenko K, Toyoda A, Hiaro K et al. Binding of neuroligins to PSD-95. Science 1997; 277: 1511–1515.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Malenka and Südhof laboratories for many helpful conversations. This study was supported by a grant from NIH (P50MH086403 to RCM and TCS) and the Simons Foundation Autism Research Initiative (307762, to TCS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T C Südhof or R C Malenka.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Polepalli, J., Chen, L. et al. Conditional ablation of neuroligin-1 in CA1 pyramidal neurons blocks LTP by a cell-autonomous NMDA receptor-independent mechanism. Mol Psychiatry 22, 375–383 (2017). https://doi.org/10.1038/mp.2016.80

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.80

This article is cited by

Search

Quick links