Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transgenerational transmission and modification of pathological traits induced by prenatal immune activation

Abstract

Prenatal exposure to infectious or inflammatory insults is increasingly recognized to contribute to the etiology of psychiatric disorders with neurodevelopmental components, including schizophrenia, autism and bipolar disorder. It remains unknown, however, if such immune-mediated brain anomalies can be transmitted to subsequent generations. Using an established mouse model of prenatal immune activation by the viral mimetic poly(I:C), we show that reduced sociability and increased cued fear expression are similarly present in the first- and second-generation offspring of immune-challenged ancestors. We further demonstrate that sensorimotor gating impairments are confined to the direct descendants of infected mothers, whereas increased behavioral despair emerges as a novel phenotype in the second generation. These transgenerational effects are mediated via the paternal lineage and are stable until the third generation, demonstrating transgenerational non-genetic inheritance of pathological traits following in-utero immune activation. Next-generation sequencing further demonstrated unique and overlapping genome-wide transcriptional changes in first- and second-generation offspring of immune-challenged ancestors. These transcriptional effects mirror the transgenerational effects on behavior, showing that prenatal immune activation leads to a transgenerational transmission (presence of similar phenotypes across generations) and modification (presence of distinct phenotypes across generations) of pathological traits. Together, our study demonstrates for, we believe, the first time that prenatal immune activation can negatively affect brain and behavioral functions in multiple generations. These findings thus highlight a novel pathological aspect of this early-life adversity in shaping disease risk across generations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Brown AS, Derkits EJ . Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 2010; 167: 261–280.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Miller BJ, Culpepper N, Rapaport MH, Buckley P . Prenatal inflammation and neurodevelopment in schizophrenia: a review of human studies. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42: 92–100.

    Article  CAS  PubMed  Google Scholar 

  3. Atladóttir HÓ, Henriksen TB, Schendel DE, Parner ET . Autism after infection, febrile episodes, and antibiotic use during pregnancy: an exploratory study. Pediatrics 2012; 130: e1447–e1454.

    Article  PubMed  Google Scholar 

  4. Brown AS, Sourander A, Hinkka-Yli-Salomäki S, McKeague IW, Sundvall J, Surcel HM . Elevated maternal C-reactive protein and autism in a national birth cohort. Mol Psychiatry 2014; 19: 259–264.

    Article  CAS  PubMed  Google Scholar 

  5. Canetta SE, Bao Y, Co MD, Ennis FA, Cruz J, Terajima M et al. Serological documentation of maternal influenza exposure and bipolar disorder in adult offspring. Am J Psychiatry 2014; 171: 557–563.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Parboosing R, Bao Y, Shen L, Schaefer CA, Brown AS . Gestational influenza and bipolar disorder in adult offspring. JAMA Psychiatry 2013; 70: 677–685.

    Article  PubMed  Google Scholar 

  7. Kneeland RE, Fatemi SH . Viral infection, inflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42: 35–48.

    Article  CAS  PubMed  Google Scholar 

  8. Harvey L, Boksa P . Prenatal and postnatal animal models of immune activation: relevance to a range of neurodevelopmental disorders. Dev Neurobiol 2012; 72: 1335–1348.

    Article  CAS  PubMed  Google Scholar 

  9. Meyer U . Prenatal poly(I:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry 2014; 75: 307–315.

    Article  CAS  PubMed  Google Scholar 

  10. Meyer U, Feldon J . Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 2010; 90: 285–326.

    Article  PubMed  Google Scholar 

  11. Labouesse MA, Langhans W, Meyer U . Long-term pathological consequences of prenatal infection: beyond brain disorders. Am J Physiol Regul Integr Comp Physiol 2015; 309: R1–R12.

    Article  CAS  PubMed  Google Scholar 

  12. Meyer U . Developmental neuroinflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42: 20–34.

    Article  CAS  PubMed  Google Scholar 

  13. Vuillermot S, Weber L, Feldon J, Meyer U . A longitudinal examination of the neurodevelopmental impact of prenatal immune activation in mice reveals primary defects in dopaminergic development relevant to schizophrenia. J Neurosci 2010; 30: 1270–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stolp HB, Turnquist C, Dziegielewska KM, Saunders NR, Anthony DC, Molnár Z . Reduced ventricular proliferation in the foetal cortex following maternal inflammation in the mouse. Brain 2011; 134: 3236–3248.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Piontkewitz Y, Arad M, Weiner I . Abnormal trajectories of neurodevelopment and behavior following in utero insult in the rat. Biol Psychiatry 2011; 70: 842–851.

    Article  PubMed  Google Scholar 

  16. Richetto J, Calabrese F, Riva MA, Meyer U . Prenatal immune activation induces maturation-dependent alterations in the prefrontal GABAergic transcriptome. Schizophr Bull 2014; 40: 351–361.

    Article  PubMed  Google Scholar 

  17. Bohacek J, Mansuy IM . Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology 2013; 38: 220–236.

    Article  CAS  PubMed  Google Scholar 

  18. Gapp K, von Ziegler L, Tweedie-Cullen RY, Mansuy IM . Early life epigenetic programming and transmission of stress-induced traits in mammals: how and when can environmental factors influence traits and their transgenerational inheritance? Bioessays 2014; 36: 491–502.

    Article  PubMed  Google Scholar 

  19. Grossniklaus U, Kelly WG, Ferguson-Smith AC, Pembrey M, Lindquist S . Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet 2013; 14: 228–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nilsson EE, Skinner MK . Environmentally induced epigenetic transgenerational inheritance of disease susceptibility. Transl Res 2014; 165: 12–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bale TL . Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 2015; 16: 332–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Franklin TB, Russig H, Weiss IC, Gräff J, Linder N, Michalon A et al. Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry 2010; 68: 408–415.

    Article  PubMed  Google Scholar 

  23. Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 2014; 17: 667–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bohacek J, Farinelli M, Mirante O, Steiner G, Gapp K, Coiret G et al. Pathological brain plasticity and cognition in the offspring of males subjected to postnatal traumatic stress. Mol Psychiatry 2015; 20: 621–631.

    Article  CAS  PubMed  Google Scholar 

  25. Rodgers AB, Morgan CP, Leu NA, Bale TL . Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci USA 2015; 112: 13699–13704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL . Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci 2013; 33: 9003–9012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Veenendaal MV, Painter RC, de Rooij SR, Bossuyt PM, van der Post JA, Gluckman PD et al. Transgenerational effects of prenatal exposure to the 1944-45 Dutch famine. BJOG 2013; 120: 548–553.

    Article  CAS  PubMed  Google Scholar 

  28. Dunn GA, Bale TL . Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 2011; 152: 2228–2236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rechavi O, Houri-Ze'evi L, Anava S, Goh WS, Kerk SY, Hannon GJ et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 2014; 158: 277–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vassoler FM, White SL, Schmidt HD, Sadri-Vakili G, Pierce RC . Epigenetic inheritance of a cocaine-resistance phenotype. Nat Neurosci 2013; 16: 42–47.

    Article  CAS  PubMed  Google Scholar 

  31. Govorko D, Bekdash RA, Zhang C, Sarkar DK . Male germline transmits fetal alcohol adverse effect on hypothalamic proopiomelanocortin gene across generations. Biol Psychiatry 2012; 72: 378–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bohacek J, Mansuy IM . Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nat Rev Genet 2015; 16: 641–652.

    Article  CAS  PubMed  Google Scholar 

  33. Vassoler FM, Sadri-Vakili G . Mechanisms of transgenerational inheritance of addictive-like behaviors. Neuroscience 2014; 264: 198–206.

    Article  CAS  PubMed  Google Scholar 

  34. Meyer U, Feldon J, Fatemi SH . In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci Biobehav Rev 2009; 33: 1061–1079.

    Article  CAS  PubMed  Google Scholar 

  35. Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I et al. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci 2006; 26: 4752–4762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meyer U, Feldon J, Schedlowski M, Yee BK . Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neurosci Biobehav Rev 2005; 29: 913–947.

    Article  CAS  PubMed  Google Scholar 

  37. Meyer U, Yee BK, Feldon J . The neurodevelopmental impact of prenatal infections at different times of pregnancy: the earlier the worse? Neuroscientist 2007; 13: 241–256.

    Article  CAS  PubMed  Google Scholar 

  38. Lipina TV, Zai C, Hlousek D, Roder JC, Wong AH . Maternal immune activation during gestation interacts with Disc1 point mutation to exacerbate schizophrenia-related behaviors in mice. J Neurosci 2013; 33: 7654–7666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Crawley JN . Translational animal models of autism and neurodevelopmental disorders. Dialogues Clin Neurosci 2012; 14: 293–305.

    PubMed  PubMed Central  Google Scholar 

  40. Kato T, Kasahara T, Kubota-Sakashita M, Kato TM, Nakajima K . Animal models of recurrent or bipolar depression. Neuroscience 2015 ; in press (epub ahead of print [PMID: 26265551])..

  41. Malkova NV, Yu CZ, Hsiao EY, Moore MJ, Patterson PH . Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav Immun 2012; 26: 607–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schwartzer JJ, Careaga M, Onore CE, Rushakoff JA, Berman RF, Ashwood P . Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice. Transl Psychiatry 2013; 3: e240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vorhees CV, Graham DL, Braun AA, Schaefer TL, Skelton MR, Richtand NM et al. Prenatal immune challenge in rats: effects of polyinosinic-polycytidylic acid on spatial learning, prepulse inhibition, conditioned fear, and responses to MK-801 and amphetamine. Neurotoxicol Teratol 2015; 47: 54–65.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Z, van Praag H . Maternal immune activation differentially impacts mature and adult-born hippocampal neurons in male mice. Brain Behav Immun 2015; 45: 60–70.

    Article  PubMed  CAS  Google Scholar 

  45. Bitanihirwe BK, Peleg-Raibstein D, Mouttet F, Feldon J, Meyer U . Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia. Neuropsychopharmacology 2010; 35: 2462–2478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zorrilla EP . Multiparous species present problems (and possibilities) to developmentalists. Dev Psychobiol 1997; 30: 141–150.

    Article  CAS  PubMed  Google Scholar 

  47. Love MI, Huber W, Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15: 550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Thomas S, Bonchev D . A survey of current software for network analysis in molecular biology. Hum Genomics 2010; 4: 353–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Young MD, Wakefield MJ, Smyth GK, Oshlack A . Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 2010; 11: R14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Cryan JF, Holmes A . The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 2005; 4: 775–790.

    Article  CAS  PubMed  Google Scholar 

  51. Fox AS, Kalin NH . A translational neuroscience approach to understanding the development of social anxiety disorder and its pathophysiology. Am J Psychiatry 2014; 171: 1162–1173.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Maren S, Phan KL, Liberzon I . The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 2013; 14: 417–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Del Boca C, Lutz PE, Le Merrer J, Koebel P, Kieffer BL . Cholecystokinin knock-down in the basolateral amygdala has anxiolytic and antidepressant-like effects in mice. Neuroscience 2012; 218: 185–195.

    Article  CAS  PubMed  Google Scholar 

  54. Chang CH, Grace AA . Amygdala-ventral pallidum pathway decreases dopamine activity after chronic mild stress in rats. Biol Psychiatry 2014; 76: 223–230.

    Article  CAS  PubMed  Google Scholar 

  55. Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P . Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry 2001; 6: 293–301.

    Article  CAS  PubMed  Google Scholar 

  56. Volk DW, Eggan SM, Lewis DA . Alterations in metabotropic glutamate receptor 1α and regulator of G protein signaling 4 in the prefrontal cortex in schizophrenia. Am J Psychiatry 2010; 167: 1489–1498.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Butler MG, McGuire AB, Masoud H, Manzardo AM . Currently recognized genes for schizophrenia: high-resolution chromosome ideogram representation. Am J Med Genet B Neuropsychiatr Genet 2016; 171: 181–202.

    Article  CAS  Google Scholar 

  58. Fatemi SH, Folsom TD, Thuras PD . Deficits in GABA(B) receptor system in schizophrenia and mood disorders: a postmortem study. Schizophr Res 2011; 128: 37–43.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Guidotti A, Auta J, Chen Y, Davis JM, Dong E, Gavin DP et al. Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharmacology 2011; 60: 1007–1016.

    Article  CAS  PubMed  Google Scholar 

  60. Ingason A, Giegling I, Hartmann AM, Genius J, Konte B, Friedl M et al. Expression analysis in a rat psychosis model identifies novel candidate genes validated in a large case-control sample of schizophrenia. Transl Psychiatry 2015; 5: e656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arion D, Unger T, Lewis DA, Levitt P, Mirnics K . Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biol Psychiatry 2007; 62: 711–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 2013; 18: 206–214.

    Article  CAS  PubMed  Google Scholar 

  63. Ginsberg SD, Hemby SE, Smiley JF . Expression profiling in neuropsychiatric disorders: emphasis on glutamate receptors in bipolar disorder. Pharmacol Biochem Behav 2012; 100: 705–711.

    Article  CAS  PubMed  Google Scholar 

  64. Rojas DC . The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment. J Neural Transm 2014; 121: 891–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lanté F, Meunier J, Guiramand J, Maurice T, Cavalier M, de Jesus Ferreira MC . Neurodevelopmental damage after prenatal infection: role of oxidative stress in the fetal brain. Free Radic Biol Med 2007; 42: 1231–1245.

    Article  PubMed  CAS  Google Scholar 

  66. Oskvig DB, Elkahloun AG, Johnson KR, Phillips TM, Herkenham M . Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav Immun 2012; 26: 623–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cabungcal JH, Counotte DS, Lewis EM, Tejeda HA, Piantadosi P, Pollock C et al. Juvenile antioxidant treatment prevents adult deficits in a developmental model of schizophrenia. Neuron 2014; 83: 1073–1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P . DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 2004; 44: 269–296.

    Article  CAS  PubMed  Google Scholar 

  69. Kunii Y, Hyde TM, Ye T, Li C, Kolachana B, Dickinson D et al. Revisiting DARPP-32 in postmortem human brain: changes in schizophrenia and bipolar disorder and genetic associations with t-DARPP-32 expression. Mol Psychiatry 2014; 19: 192–199.

    Article  CAS  PubMed  Google Scholar 

  70. Selcher JC, Weeber EJ, Varga AW, Sweatt JD, Swank M . Protein kinase signal transduction cascades in mammalian associative conditioning. Neuroscientist 2002; 8: 122–131.

    Article  CAS  PubMed  Google Scholar 

  71. Basil P, Li Q, Dempster EL, Mill J, Sham PC, Wong CC et al. Prenatal maternal immune activation causes epigenetic differences in adolescent mouse brain. Transl Psychiatry 2014; 4: e434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Labouesse MA, Dong E, Grayson D, Guidotti A, Meyer U . Maternal immune activation induces GAD1 and GAD2 promoter remodeling in the offspring prefrontal cortex. Epigenetics 2015; 10: 1143–1155.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Connor CM, Dincer A, Straubhaar J, Galler JR, Houston IB, Akbarian S . Maternal immune activation alters behavior in adult offspring, with subtle changes in the cortical transcriptome and epigenome. Schizophr Res 2012; 140: 175–184.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hollins SL, Zavitsanou K, Walker FR, Cairns MJ . Alteration of imprinted Dlk1-Dio3 miRNA cluster expression in the entorhinal cortex induced by maternal immune activation and adolescent cannabinoid exposure. Transl Psychiatry 2014; 4: e452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Giovanoli S, Engler H, Engler A, Richetto J, Voget M, Willi R et al. Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science 2013; 339: 1095–1099.

    Article  CAS  PubMed  Google Scholar 

  76. Nyffeler M, Meyer U, Yee BK, Feldon J, Knuesel I . Maternal immune activation during pregnancy increases limbic GABAA receptor immunoreactivity in the adult offspring: implications for schizophrenia. Neuroscience 2006; 143: 51–62.

    Article  CAS  PubMed  Google Scholar 

  77. Fatemi SH, Emamian ES, Kist D, Sidwell RW, Nakajima K, Akhter P et al. Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry 1999; 4: 145–154.

    Article  CAS  PubMed  Google Scholar 

  78. Fatemi SH, Folsom TD, Rooney RJ, Mori S, Kornfield TE, Reutiman TJ . The viral theory of schizophrenia revisited: abnormal placental gene expression and structural changes with lack of evidence for H1N1 viral presence in placentae of infected mice or brains of exposed offspring. Neuropharmacology 2012; 62: 1290–1298.

    Article  CAS  PubMed  Google Scholar 

  79. Abel T, Nguyen PV, Barad M, Deuel TA, Kandel ER, Bourtchouladze R . Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 1997; 88: 615–626.

    Article  CAS  PubMed  Google Scholar 

  80. Bourtchouladze R, Abel T, Berman N, Gordon R, Lapidus K, Kandel ER . Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA. Learn Mem 1998; 5: 365–374.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schafe GE, LeDoux JE . Memory consolidation of auditory pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. J Neurosci 2000; 20: RC96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ikegami S, Inokuchi K . Antisense DNA against calcineurin facilitates memory in contextual fear conditioning by lowering the threshold for hippocampal long-term potentiation induction. Neuroscience 2000; 98: 637–646.

    Article  CAS  PubMed  Google Scholar 

  83. Havekes R, Nijholt IM, Visser AK, Eisel UL, Van der Zee EA . Transgenic inhibition of neuronal calcineurin activity in the forebrain facilitates fear conditioning, but inhibits the extinction of contextual fear memories. Neurobiol Learn Mem 2008; 89: 595–598.

    Article  CAS  PubMed  Google Scholar 

  84. Almeida-Corrêa S, Moulin TC, Carneiro CF, Gonçalves MM, Junqueira LS, Amaral OB . Calcineurin inhibition blocks within-, but not between-session fear extinction in mice. Learn Mem 2015; 22: 159–169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Meyer U, Feldon J, Schedlowski M, Yee BK . Immunological stress at the maternal-foetal interface: a link between neurodevelopment and adult psychopathology. Brain Behav Immun 2006; 20: 378–388.

    Article  CAS  PubMed  Google Scholar 

  86. Meyer U, Nyffeler M, Yee BK, Knuesel I, Feldon J . Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain Behav Immun 2008; 22: 469–486.

    Article  CAS  PubMed  Google Scholar 

  87. Fortier ME, Luheshi GN, Boksa P . Effects of prenatal infection on prepulse inhibition in the rat depend on the nature of the infectious agent and the stage of pregnancy. Behav Brain Res 2007; 181: 270–277.

    Article  PubMed  Google Scholar 

  88. Bauman MD, Iosif AM, Smith SE, Bregere C, Amaral DG, Patterson PH . Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring. Biol Psychiatry 2014; 75: 332–341.

    Article  CAS  PubMed  Google Scholar 

  89. Meyer U, Feldon J, Yee BK . A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophr Bull 2009; 35: 959–972.

    Article  PubMed  Google Scholar 

  90. Kohli RM, Zhang Y . TET enzymes, TDG and the dynamics of DNA demethylation. Nature 2013; 502: 472–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W . Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci 2013; 368: 20110330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Weihong Qi and Anna Bratus from the Functional Genomics Center Zurich, Switzerland, for their technical assistance in RNA sequencing. This work was supported by the Swiss National Science Foundation (Grant No. 310030_146217) and by the European Union Seventh Framework Program (FP7/2007–2011; Grant Agreement No. 259679) awarded to UM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to U Weber-Stadlbauer or U Meyer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website .

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber-Stadlbauer, U., Richetto, J., Labouesse, M. et al. Transgenerational transmission and modification of pathological traits induced by prenatal immune activation. Mol Psychiatry 22, 102–112 (2017). https://doi.org/10.1038/mp.2016.41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.41

This article is cited by

Search

Quick links