Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dynamic modulation of inflammatory pain-related affective and sensory symptoms by optical control of amygdala metabotropic glutamate receptor 4

Abstract

Contrary to acute pain, chronic pain does not serve as a warning signal and must be considered as a disease per se. This pathology presents a sensory and psychological dimension at the origin of affective and cognitive disorders. Being largely refractory to current pharmacotherapies, identification of endogenous systems involved in persistent and chronic pain is crucial. The amygdala is a key brain region linking pain sensation with negative emotions. Here, we show that activation of a specific intrinsic neuromodulatory system within the amygdala associated with type 4 metabotropic glutamate receptors (mGlu4) abolishes sensory and affective symptoms of persistent pain such as hypersensitivity to pain, anxiety- and depression-related behaviors, and fear extinction impairment. Interestingly, neuroanatomical and synaptic analysis of the amygdala circuitry suggests that the effects of mGlu4 activation occur outside the central nucleus via modulation of multisensory thalamic inputs to lateral amygdala principal neurons and dorso-medial intercalated cells. Furthermore, we developed optogluram, a small diffusible photoswitchable positive allosteric modulator of mGlu4. This ligand allows the control of endogenous mGlu4 activity with light. Using this photopharmacological approach, we rapidly and reversibly inhibited behavioral symptoms associated with persistent pain through optical control of optogluram in the amygdala of freely behaving animals. Altogether, our data identify amygdala mGlu4 signaling as a mechanism that bypasses central sensitization processes to dynamically modulate persistent pain symptoms. Our findings help to define novel and more precise therapeutic interventions for chronic pain, and exemplify the potential of optopharmacology to study the dynamic activity of endogenous neuromodulatory mechanisms in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D . Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain 2006; 10: 287–333.

    Article  Google Scholar 

  2. Johannes CB, Le TK, Zhou X, Johnston JA, Dworkin RH . The prevalence of chronic pain in United States adults: results of an Internet-based survey. J Pain 2010; 11: 1230–1239.

    Article  Google Scholar 

  3. Nightingale S . The neuropathic pain market. Nat Rev Drug Discov 2012; 11: 101–102.

    Article  CAS  Google Scholar 

  4. Bushnell MC, Ceko M, Low LA . Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 2013; 14: 502–511.

    Article  CAS  Google Scholar 

  5. Basbaum AI, Bautista DM, Scherrer G, Julius D . Cellular and molecular mechanisms of pain. Cell 2009; 139: 267–284.

    Article  CAS  Google Scholar 

  6. Latremoliere A, Woolf CJ . Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 2009; 10: 895–926.

    Article  Google Scholar 

  7. Goudet C, Magnaghi V, Landry M, Nagy F, RWt Gereau, Pin JP . Metabotropic receptors for glutamate and GABA in pain. Brain Res Rev 2009; 60: 43–56.

    Article  CAS  Google Scholar 

  8. Goudet C, Chapuy E, Alloui A, Acher F, Pin JP, Eschalier A . Group III metabotropic glutamate receptors inhibit hyperalgesia in animal models of inflammation and neuropathic pain. Pain 2008; 137: 112–124.

    Article  CAS  Google Scholar 

  9. Vilar B, Busserolles J, Ling B, Laffray S, Ulmann L, Malhaire F et al. Alleviating pain hypersensitivity through activation of type 4 metabotropic glutamate receptor. J Neurosci 2013; 33: 18951–18965.

    Article  CAS  Google Scholar 

  10. Wang H, Jiang W, Yang R, Li Y . Spinal metabotropic glutamate receptor 4 is involved in neuropathic pain. Neuroreport 2011; 22: 244–248.

    Article  CAS  Google Scholar 

  11. Davis MJ, Haley T, Duvoisin RM, Raber J . Measures of anxiety, sensorimotor function, and memory in male and female mGluR4(-)/(-) mice. Behav Brain Res 2012; 229: 21–28.

    Article  Google Scholar 

  12. Davis MJ, Iancu OD, Acher FC, Stewart BM, Eiwaz MA, Duvoisin RM et al. Role of mGluR4 in acquisition of fear learning and memory. Neuropharmacology 2013; 66: 365–372.

    Article  CAS  Google Scholar 

  13. Neugebauer V . Amygdala pain mechanisms. Handb Exp Pharmacol 2015; 227: 261–284.

    Article  CAS  Google Scholar 

  14. Neugebauer V, Li W, Bird GC, Bhave G, Gereau RWt . Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5. J Neurosci 2003; 23: 52–63.

    Article  CAS  Google Scholar 

  15. Jiang H, Fang D, Kong LY, Jin ZR, Cai J, Kang XJ et al. Sensitization of neurons in the central nucleus of the amygdala via the decreased GABAergic inhibition contributes to the development of neuropathic pain-related anxiety-like behaviors in rats. Mol Brain 2014; 7: 72.

    Article  CAS  Google Scholar 

  16. Pekhletski R, Gerlai R, Overstreet LS, Huang XP, Agopyan N, Slater NT et al. Impaired cerebellar synaptic plasticity and motor performance in mice lacking the mGluR4 subtype of metabotropic glutamate receptor. J Neurosci 1996; 16: 6364–6373.

    Article  CAS  Google Scholar 

  17. Pitsch J, Schoch S, Gueler N, Flor PJ, van der Putten H, Becker AJ . Functional role of mGluR1 and mGluR4 in pilocarpine-induced temporal lobe epilepsy. Neurobiol Dis 2007; 26: 623–633.

    Article  CAS  Google Scholar 

  18. De Bundel D, Zussy C, Espallergues J, Gerfen CR, Girault JA, Valjent E . Dopamine D2 receptors gate generalization of conditioned threat responses through mTORC1 signaling in the extended amygdala. Mol Psychiatry 2016; 21: 1545–1553.

    Article  CAS  Google Scholar 

  19. Brabet I, Parmentier ML, De Colle C, Bockaert J, Acher F, Pin JP . Comparative effect of L-CCG-I, DCG-IV and gamma-carboxy-L-glutamate on all cloned metabotropic glutamate receptor subtypes. Neuropharmacology 1998; 37: 1043–1051.

    Article  CAS  Google Scholar 

  20. Gomeza J, Mary S, Brabet I, Parmentier ML, Restituito S, Bockaert J et al. Coupling of metabotropic glutamate receptors 2 and 4 to G alpha 15, G alpha 16, and chimeric G alpha q/i proteins: characterization of new antagonists. Mol Pharmacol 1996; 50: 923–930.

    CAS  PubMed  Google Scholar 

  21. Trinquet E, Fink M, Bazin H, Grillet F, Maurin F, Bourrier E et al. D-myo-inositol 1-phosphate as a surrogate of D-myo-inositol 1,4,5-tris phosphate to monitor G protein-coupled receptor activation. Anal Biochem 2006; 358: 126–135.

    Article  CAS  Google Scholar 

  22. Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T . Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 2003; 467: 60–79.

    Article  CAS  Google Scholar 

  23. Asede D, Bosch D, Luthi A, Ferraguti F, Ehrlich I . Sensory inputs to intercalated cells provide fear-learning modulated inhibition to the basolateral amygdala. Neuron 2015; 86: 541–554.

    Article  CAS  Google Scholar 

  24. Pittolo S, Gomez-Santacana X, Eckelt K, Rovira X, Dalton J, Goudet C et al. An allosteric modulator to control endogenous G protein-coupled receptors with light. Nat Chem Biol 2014; 10: 813–815.

    Article  CAS  Google Scholar 

  25. Goudet C, Vilar B, Courtiol T, Deltheil T, Bessiron T, Brabet I et al. A novel selective metabotropic glutamate receptor 4 agonist reveals new possibilities for developing subtype selective ligands with therapeutic potential. FASEB J 2012; 26: 1682–1693.

    Article  CAS  Google Scholar 

  26. Sigurdsson T, Doyere V, Cain CK, LeDoux JE . Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology 2007; 52: 215–227.

    Article  CAS  Google Scholar 

  27. Pape HC, Pare D . Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 2010; 90: 419–463.

    Article  CAS  Google Scholar 

  28. Bienvenu TC, Busti D, Micklem BR, Mansouri M, Magill PJ, Ferraguti F et al. Large intercalated neurons of amygdala relay noxious sensory information. J Neurosci 2015; 35: 2044–2057.

    Article  CAS  Google Scholar 

  29. Veinante P, Yalcin I, Barrot M . The amygdala between sensation and affect: a role in pain. J Mol Psychiatry 2013; 1: 9.

    Article  Google Scholar 

  30. Harris KM, Weinberg RJ . Ultrastructure of synapses in the mammalian brain. Cold Spring Harb Perspect Biol 2012; 4: 5.

    Article  Google Scholar 

  31. Gray EG . Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 1959; 93: 420–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohishi H, Akazawa C, Shigemoto R, Nakanishi S, Mizuno N . Distributions of the mRNAs for L-2-amino-4-phosphonobutyrate-sensitive metabotropic glutamate receptors, mGluR4 and mGluR7, in the rat brain. J Comp Neurol 1995; 360: 555–570.

    Article  CAS  Google Scholar 

  33. Fremeau RT Jr, Voglmaier S, Seal RP, Edwards RH . VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 2004; 27: 98–103.

    Article  CAS  Google Scholar 

  34. Barroso-Chinea P, Castle M, Aymerich MS, Lanciego JL . Expression of vesicular glutamate transporters 1 and 2 in the cells of origin of the rat thalamostriatal pathway. J Chem Neuroanat 2008; 35: 101–107.

    Article  CAS  Google Scholar 

  35. Sah P, Lopez De Armentia M . Excitatory synaptic transmission in the lateral and central amygdala. Ann N Y Acad Sci 2003; 985: 67–77.

    Article  CAS  Google Scholar 

  36. Lanuza E, Nader K, Ledoux JE . Unconditioned stimulus pathways to the amygdala: effects of posterior thalamic and cortical lesions on fear conditioning. Neuroscience 2004; 125: 305–315.

    Article  CAS  Google Scholar 

  37. Duvarci S, Pare D . Amygdala microcircuits controlling learned fear. Neuron 2014; 82: 966–980.

    Article  CAS  Google Scholar 

  38. Likhtik E, Popa D, Apergis-Schoute J, Fidacaro GA, Pare D . Amygdala intercalated neurons are required for expression of fear extinction. Nature 2008; 454: 642–645.

    Article  CAS  Google Scholar 

  39. Busti D, Geracitano R, Whittle N, Dalezios Y, Manko M, Kaufmann W et al. Different fear states engage distinct networks within the intercalated cell clusters of the amygdala. J Neurosci 2011; 31: 5131–5144.

    Article  CAS  Google Scholar 

  40. Jones CK, Bubser M, Thompson AD, Dickerson JW, Turle-Lorenzo N, Amalric M et al. The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine 2 A antagonist in preclinical rodent models of Parkinson's disease. J Pharmacol Exp Ther 2012; 340: 404–421.

    Article  CAS  Google Scholar 

  41. Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N et al. Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem 1993; 268: 11868–11873.

    CAS  PubMed  Google Scholar 

  42. Carr FB, Zachariou V . Nociception and pain: lessons from optogenetics. Front Behav Neurosci 2014; 8: 69.

    Article  Google Scholar 

  43. Lalumiere RT . Optogenetic dissection of amygdala functioning. Front Behav Neurosci 2014; 8: 107.

    Article  Google Scholar 

  44. Bahamonde MI, Taura J, Paoletta S, Gakh AA, Chakraborty S, Hernando J et al. Photomodulation of G protein-coupled adenosine receptors by a novel light-switchable ligand. Bioconjug Chem 2014; 25: 1847–1854.

    Article  CAS  Google Scholar 

  45. Broichhagen J, Schonberger M, Cork SC, Frank JA, Marchetti P, Bugliani M et al. Optical control of insulin release using a photoswitchable sulfonylurea. Nat Commun 2014; 5: 5116.

    Article  CAS  Google Scholar 

  46. Kokel D, Cheung CY, Mills R, Coutinho-Budd J, Huang L, Setola V et al. Photochemical activation of TRPA1 channels in neurons and animals. Nat Chem Biol 2013; 9: 257–263.

    Article  CAS  Google Scholar 

  47. Schonberger M, Trauner D . A photochromic agonist for mu-opioid receptors. Angew Chem Int Ed Engl 2014; 53: 3264–3267.

    Article  Google Scholar 

  48. Stein M, Middendorp SJ, Carta V, Pejo E, Raines DE, Forman SA et al. Azo-propofols: photochromic potentiators of GABA(A) receptors. Angew Chem Int Ed Engl 2012; 51: 10500–10504.

    Article  CAS  Google Scholar 

  49. Mahan AL, Ressler KJ . Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci 2012; 35: 24–35.

    Article  CAS  Google Scholar 

  50. Herry C, Ferraguti F, Singewald N, Letzkus JJ, Ehrlich I, Luthi A . Neuronal circuits of fear extinction. Eur J Neurosci 2010; 31: 599–612.

    Article  Google Scholar 

  51. Podkowa K, Rzezniczek S, Marciniak M, Acher F, Pilc A, Palucha-Poniewiera A . A novel mGlu4 selective agonist LSP4-2022 increases behavioral despair in mouse models of antidepressant action. Neuropharmacology 2015; 97: 338–345.

    Article  CAS  Google Scholar 

  52. Kalinichev M, Le Poul E, Bolea C, Girard F, Campo B, Fonsi M et al. Characterization of the novel positive allosteric modulator of the metabotropic glutamate receptor 4 ADX88178 in rodent models of neuropsychiatric disorders. J Pharmacol Exp Ther 2014; 350: 495–505.

    Article  Google Scholar 

  53. Klak K, Palucha A, Branski P, Sowa M, Pilc A . Combined administration of PHCCC, a positive allosteric modulator of mGlu4 receptors and ACPT-I, mGlu III receptor agonist evokes antidepressant-like effects in rats. Amino Acids 2007; 32: 169–172.

    Article  CAS  Google Scholar 

  54. Slawinska A, Wieronska JM, Stachowicz K, Palucha-Poniewiera A, Uberti MA, Bacolod MA et al. Anxiolytic- but not antidepressant-like activity of Lu AF21934, a novel, selective positive allosteric modulator of the mGlu(4) receptor. Neuropharmacology 2013; 66: 225–235.

    Article  CAS  Google Scholar 

  55. Wieronska JM, Stachowicz K, Palucha-Poniewiera A, Acher F, Branski P, Pilc A . Metabotropic glutamate receptor 4 novel agonist LSP1-2111 with anxiolytic, but not antidepressant-like activity, mediated by serotonergic and GABAergic systems. Neuropharmacology 2010; 59: 627–634.

    Article  CAS  Google Scholar 

  56. Todd AJ . Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 2010; 11: 823–836.

    Article  CAS  Google Scholar 

  57. Han S, Soleiman MT, Soden ME, Zweifel LS, Palmiter RD . Elucidating an affective pain circuit that creates a threat memory. Cell 2015; 162: 363–374.

    Article  CAS  Google Scholar 

  58. Neugebauer V, Galhardo V, Maione S, Mackey SC . Forebrain pain mechanisms. Brain Res Rev 2009; 60: 226–242.

    Article  Google Scholar 

  59. Pare D, Quirk GJ, Ledoux JE . New vistas on amygdala networks in conditioned fear. J Neurophysiol 2004; 92: 1–9.

    Article  Google Scholar 

  60. Maren S . Synaptic mechanisms of associative memory in the amygdala. Neuron 2005; 47: 783–786.

    Article  CAS  Google Scholar 

  61. Phelps EA, LeDoux JE . Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 2005; 48: 175–187.

    Article  CAS  Google Scholar 

  62. Dobi A, Sartori SB, Busti D, Van der Putten H, Singewald N, Shigemoto R et al. Neural substrates for the distinct effects of presynaptic group III metabotropic glutamate receptors on extinction of contextual fear conditioning in mice. Neuropharmacology 2013; 66: 274–289.

    Article  CAS  Google Scholar 

  63. Palazzo E, Fu Y, Ji G, Maione S, Neugebauer V . Group III mGluR7 and mGluR8 in the amygdala differentially modulate nocifensive and affective pain behaviors. Neuropharmacology 2008; 55: 537–545.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Nicola Romanò, Sophie Laffray, Emmanuel Bourinet, André Calas and Etienne Gontier for research assistance and helpful discussions, and Ebba L. Lagerqvist for critical reading of the manuscript. Cell-based pharmacological assays were performed on the ARPEGE (Pharmacology-Screening-Interactome) platform at the Institute de Génomique Fonctionnelle. We acknowledge financial support from the Agence Nationale de la Recherche (ANR-12-NEUR-0003 and ANR-13-BSV1-006 to CG), the ERANET Neuron LIGHTPAIN project (to AL, JG and J-PP), the Fundació La Marató de TV3 (110230, 110231, 110232, to JG, AL and CG), the Fondation Recherche Médicale (FRM team DEQ20130326522 to J-PP), the Centre National de la Recherche Scientifique (FA, J-PP and CG), the Catalan government (2012 BEI_ 00597 to XG-S and 2014SGR-0109 to AL), the Federation of European Biochemical Societies and the Spanish Government (CTQ2014-57020-R to AL and SAF2014-58396-R to JG), the Beatriu de Pinós program of Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR, to XR), the Charitable Hertie Foundation (to IE), the Werner Reichardt Centre for Integrative Neuroscience at the University of Tuebingen, an Excellence Cluster funded by the Deutsche Forschungsgemeinschaft (DFG, EXC 307, to IE), and the Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung, Sonderforschungsbereich grant F44-17-B23 and W012060-10 to FF).

Author contributions

CZ conceived, performed and analyzed behavioral pharmacology, immunofluorescence microscopy and immediate early gene experiments, and wrote the paper. XGS designed and synthesized optogluram, characterized photoisomerization, and performed and analyzed cell-based pharmacological experiments. XR performed and analyzed cell-based pharmacological experiments. DDB performed and analyzed behavioral pharmacology experiments. SF performed immunofluorescence and electron microscopy experiments. DB and DA performed and analyzed classical and optogenetic-based electrophysiological experiments. FM performed and analyzed cell-based pharmacological experiments. FA designed and synthesized LSP4-2022. JG supervised and analyzed pharmacological experiments. EV supervised and designed behavioral experiments. IE supervised and designed electrophysiology experiments. FF supervised and designed neuroanatomy experiments. J-PP analyzed pharmacological results, designed experiments and analyzed activity data. AL conceived and supervised the project, planned experiments, designed compounds. CG conceived and supervised the project, designed and analyzed results and wrote the paper. All authors made comments and corrections to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Goudet.

Ethics declarations

Competing interests

AL, JG, XG-S, XR, CG and J-PP have filed a patent application for photochromic allosteric modulators of metabotropic glutamate receptors. FA, CG and J-PP have filed a patent application for the antihyperalgesic activity of hypophosphorous acid derivatives. The remaining authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zussy, C., Gómez-Santacana, X., Rovira, X. et al. Dynamic modulation of inflammatory pain-related affective and sensory symptoms by optical control of amygdala metabotropic glutamate receptor 4. Mol Psychiatry 23, 509–520 (2018). https://doi.org/10.1038/mp.2016.223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.223

This article is cited by

Search

Quick links