Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

High-throughput sequencing of the synaptome in major depressive disorder

Subjects

Abstract

Major depressive disorder (MDD) is among the leading causes of worldwide disability. Despite its significant heritability, large-scale genome-wide association studies (GWASs) of MDD have yet to identify robustly associated common variants. Although increased sample sizes are being amassed for the next wave of GWAS, few studies have as yet focused on rare genetic variants in the study of MDD. We sequenced the exons of 1742 synaptic genes previously identified by proteomic experiments. PLINK/SEQ was used to perform single variant, gene burden and gene set analyses. The GeneMANIA interaction database was used to identify protein–protein interaction-based networks. Cases were selected from a familial collection of early-onset, recurrent depression and were compared with screened controls. After extensive quality control, we analyzed 259 cases with familial, early-onset MDD and 334 controls. The distribution of association test statistics for the single variant and gene burden analyses were consistent with the null hypothesis. However, analysis of prioritized gene sets showed a significant association with damaging singleton variants in a Cav2-adaptor gene set (odds ratio=2.6; P=0.0008) that survived correction for all gene sets and annotation categories tested (empirical P=0.049). In addition, we also found statistically significant evidence for an enrichment of rare variants in a protein-based network of 14 genes involved in actin polymerization and dendritic spine formation (nominal P=0.0031). In conclusion, we have identified a statistically significant gene set and gene network of rare variants that are over-represented in MDD, providing initial evidence that calcium signaling and dendrite regulation may be involved in the etiology of depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE et al. Global burden of disease attributable to mental and substance use disorders: Findings from the global burden of disease study 2010. Lancet 2013; 382: 1575–1586.

    Article  Google Scholar 

  2. Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJ et al. Burden of depressive disorders by country, sex, age, and year: Findings from the global burden of disease study 2010. PLoS Med 2013; 10: e1001547.

    Article  Google Scholar 

  3. Flint J, Kendler KS . The genetics of major depression. Neuron 2014; 81: 484–503.

    Article  CAS  Google Scholar 

  4. Sullivan PF, Neale MC, Kendler KS . Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000; 157: 1552–1562.

    Article  CAS  Google Scholar 

  5. Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium, Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry 2013; 18: 497–511.

    Article  Google Scholar 

  6. Pritchard JK . Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 2001; 69: 124–137.

    Article  CAS  Google Scholar 

  7. Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BW, Willemsen MH et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014; 511: 344–347.

    Article  CAS  Google Scholar 

  8. Krumm N, O'Roak BJ, Shendure J, Eichler EE . A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci 2014; 37: 95–105.

    Article  CAS  Google Scholar 

  9. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014; 506: 185–190.

    Article  CAS  Google Scholar 

  10. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014; 506: 179–184.

    Article  CAS  Google Scholar 

  11. Georgi B, Craig D, Kember RL, Liu W, Lindquist I, Nasser S et al. Genomic view of bipolar disorder revealed by whole genome sequencing in a genetic isolate. PLoS Genet 2014; 10: e1004229.

    Article  Google Scholar 

  12. Tammiste A, Jiang T, Fischer K, Magi R, Krjutskov K, Pettai K et al. Whole-exome sequencing identifies a polymorphism in the BMP5 gene associated with SSRI treatment response in major depression. J Psychopharmacol 2013; 27: 915–920.

    Article  CAS  Google Scholar 

  13. Grant SG . Synaptopathies: diseases of the synaptome. Curr Opin Neurobiol 2012; 22: 522–529.

    Article  CAS  Google Scholar 

  14. Nithianantharajah J, Komiyama NH, McKechanie A, Johnstone M, Blackwood DH St, Clair D et al. Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nat Neurosci 2013; 16: 16–24.

    Article  CAS  Google Scholar 

  15. Levinson DF, Zubenko GS, Crowe RR, DePaulo RJ, Scheftner WS, Weissman MM et al. Genetics of recurrent early-onset depression (GenRED): Design and preliminary clinical characteristics of a repository sample for genetic linkage studies. Am J Med Genet B Neuropsychiatr Genet 2003; 119: 118–130.

    Article  Google Scholar 

  16. Pirooznia M, Wang T, Avramopoulos D, Valle D, Thomas G, Huganir RL et al. SynaptomeDB: an ontology-based knowledgebase for synaptic genes. Bioinformatics 2012; 28: 897–899.

    Article  CAS  Google Scholar 

  17. Li H, Durbin R . Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 2009; 25: 1754–1760.

    Article  CAS  Google Scholar 

  18. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20: 1297–1303.

    Article  CAS  Google Scholar 

  19. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011; 43: 491–498.

    Article  CAS  Google Scholar 

  20. Pirooznia M, Kramer M, Parla J, Goes FS, Potash JB, McCombie WR et al. Validation and assessment of variant calling pipelines for next-generation sequencing. Hum Genomics 2014; 8: 7364–8-14.

    Article  Google Scholar 

  21. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D . Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.

    Article  CAS  Google Scholar 

  22. Wang K, Li M, Hakonarson H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010; 38: e164.

    Article  Google Scholar 

  23. Bull SB, Lewinger JP, Lee SS . Confidence intervals for multinomial logistic regression in sparse data. Stat Med 2007; 26: 903–918.

    Article  Google Scholar 

  24. Heinze G, Schemper M . A solution to the problem of separation in logistic regression. Stat Med 2002; 21: 2409–2419.

    Article  Google Scholar 

  25. Heinze G . A comparative investigation of methods for logistic regression with separated or nearly separated data. Stat Med 2006; 25: 4216–4226.

    Article  Google Scholar 

  26. Lee S, Wu MC, Lin X . Optimal tests for rare variant effects in sequencing association studies. Biostatistics 2012; 13: 762–775.

    Article  Google Scholar 

  27. Cross-Disorder Group of the Psychiatric Genomics Consortium, Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 2013; 45: 984–994.

    Article  Google Scholar 

  28. Psychiatric GWAS Consortium Bipolar Disorder Working Group Sklar P, Ripke S, Scott LJ, Andreassen OA, Cichon S et al. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 2011; 43: 977–983.

    Article  Google Scholar 

  29. Gulsuner S, Walsh T, Watts AC, Lee MK, Thornton AM, Casadei S et al. Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 2013; 154: 518–529.

    Article  CAS  Google Scholar 

  30. Zuberi K, Franz M, Rodriguez H, Montojo J, Lopes CT, Bader GD et al. GeneMANIA prediction server 2013 update. Nucleic Acids Res 2013; 41: W115–W122.

    Article  Google Scholar 

  31. Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci USA 2014; 111: E455–E464.

    Article  CAS  Google Scholar 

  32. Agarwala V, Flannick J, Sunyaev S, GoT2D Consortium, Altshuler D . Evaluating empirical bounds on complex disease genetic architecture. Nat Genet 2013; 45: 1418–1427.

  33. Muller CS, Haupt A, Bildl W, Schindler J, Knaus HG, Meissner M et al. Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc Natl Acad Sci USA 2010; 107: 14950–14957.

    Article  Google Scholar 

  34. Kaeser PS, Deng L, Fan M, Sudhof TC . RIM genes differentially contribute to organizing presynaptic release sites. Proc Natl Acad Sci USA 2012; 109: 11830–11835.

    Article  CAS  Google Scholar 

  35. Fujita Y, Shirataki H, Sakisaka T, Asakura T, Ohya T, Kotani H et al. Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron 1998; 20: 905–915.

    Article  CAS  Google Scholar 

  36. Taylor AM, Wu J, Tai HC, Schuman EM . Axonal translation of beta-catenin regulates synaptic vesicle dynamics. J Neurosci 2013; 33: 5584–5589.

    Article  CAS  Google Scholar 

  37. Nagano F, Kawabe H, Nakanishi H, Shinohara M, Deguchi-Tawarada M, Takeuchi M et al. Rabconnectin-3, a novel protein that binds both GDP/GTP exchange protein and GTPase-activating protein for Rab3 small G protein family. J Biol Chem 2002; 277: 9629–9632.

    Article  CAS  Google Scholar 

  38. Sudhof TC, Czernik AJ, Kao HT, Takei K, Johnston PA, Horiuchi A et al. Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science 1989; 245: 1474–1480.

    Article  CAS  Google Scholar 

  39. Cukier HN, Dueker ND, Slifer SH, Lee JM, Whitehead PL, Lalanne E et al. Exome sequencing of extended families with autism reveals genes shared across neurodevelopmental and neuropsychiatric disorders. Mol Autism 2014; 5: 2392–25.

    Article  Google Scholar 

  40. Dong S, Walker MF, Carriero NJ, DiCola M, Willsey AJ, Ye AY et al. De novo insertions and deletions of predominantly paternal origin are associated with autism spectrum disorder. Cell Rep 2014; 9: 16–23.

    Article  CAS  Google Scholar 

  41. Lignani G, Raimondi A, Ferrea E, Rocchi A, Paonessa F, Cesca F et al. Epileptogenic Q555X SYN1 mutant triggers imbalances in release dynamics and short-term plasticity. Hum Mol Genet 2013; 22: 2186–2199.

    Article  CAS  Google Scholar 

  42. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.

    Article  Google Scholar 

  43. Janmey PA, Stossel TP . Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 1987; 325: 362–364.

    Article  CAS  Google Scholar 

  44. Lin KM, Wenegieme E, Lu PJ, Chen CS, Yin HL . Gelsolin binding to phosphatidylinositol 4,5-bisphosphate is modulated by calcium and pH. J Biol Chem 1997; 272: 20443–20450.

    Article  CAS  Google Scholar 

  45. Kim IH, Racz B, Wang H, Burianek L, Weinberg R, Yasuda R et al. Disruption of Arp2/3 results in asymmetric structural plasticity of dendritic spines and progressive synaptic and behavioral abnormalities. J Neurosci 2013; 33: 6081–6092.

    Article  CAS  Google Scholar 

  46. Xu K, Zhong G, Zhuang X . Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 2013; 339: 452–456.

    Article  CAS  Google Scholar 

  47. Lee HJ, Lee K, Im H . Alpha-synuclein modulates neurite outgrowth by interacting with SPTBN1. Biochem Biophys Res Commun 2012; 424: 497–502.

    Article  CAS  Google Scholar 

  48. Andres AL, Regev L, Phi L, Seese RR, Chen Y, Gall CM et al. NMDA receptor activation and calpain contribute to disruption of dendritic spines by the stress neuropeptide CRH. J Neurosci 2013; 33: 16945–16960.

    Article  CAS  Google Scholar 

  49. Hokanson DE, Laakso JM, Lin T, Sept D, Ostap EM . Myo1c binds phosphoinositides through a putative pleckstrin homology domain. Mol Biol Cell 2006; 17: 4856–4865.

    Article  CAS  Google Scholar 

  50. Wang FS, Liu CW, Diefenbach TJ, Jay DG . Modeling the role of myosin 1c in neuronal growth cone turning. Biophys J 2003; 85: 3319–3328.

    Article  CAS  Google Scholar 

  51. Stauffer EA, Scarborough JD, Hirono M, Miller ED, Shah K, Mercer JA et al. Fast adaptation in vestibular hair cells requires myosin-1c activity. Neuron 2005; 47: 541–553.

    Article  CAS  Google Scholar 

  52. Bellot A, Guivernau B, Tajes M, Bosch-Morato M, Valls-Comamala V, Munoz FJ . The structure and function of actin cytoskeleton in mature glutamatergic dendritic spines. Brain Res 2014; 1573: 1–16.

    Article  CAS  Google Scholar 

  53. Clement JP, Aceti M, Creson TK, Ozkan ED, Shi Y, Reish NJ et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 2012; 151: 709–723.

    Article  CAS  Google Scholar 

  54. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 2014; 83: 1131–1143.

    Article  CAS  Google Scholar 

  55. Wei W, Nguyen LN, Kessels HW, Hagiwara H, Sisodia S, Malinow R . Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nat Neurosci 2010; 13: 190–196.

    Article  CAS  Google Scholar 

  56. Konopaske GT, Lange N, Coyle JT, Benes FM . Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. JAMA Psychiatry 2014; 71: 1323–1331.

    Article  Google Scholar 

  57. Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 2012; 18: 1413–1417.

    Article  CAS  Google Scholar 

  58. Licznerski P, Duman RS . Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression. Neuroscience 2013; 251: 33–50.

    Article  CAS  Google Scholar 

  59. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010; 329: 959–964.

    Article  CAS  Google Scholar 

  60. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G et al. Integrative genomics viewer. Nat Biotechnol 2011; 29: 24–26.

    Article  CAS  Google Scholar 

  61. McCarthy DJ, Humburg P, Kanapin A, Rivas MA, Gaulton K, Cazier JB et al. Choice of transcripts and software has a large effect on variant annotation. Genome Med 2014; 6: 26.

    Article  Google Scholar 

  62. Berg JM, Geschwind DH . Autism genetics: searching for specificity and convergence. Genome Biol 2012; 13: 247.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Johns Hopkins University Brain Science Institute (TW, JBP, FSG). Data and biomaterials were collected in six projects that participated in the NIMH Genetics of Recurrent Early-Onset Depression (GenRED) project. From 1999 to 2003, the principal investigators and co-investigators were New York State Psychiatric Institute, New York, R01-MH060912 (Myrna Weissman, PhD and James K Knowles, MD, PhD); University of Pittsburgh, R01-MH060866 (George S Zubenko, MD, PhD, and Wendy N Zubenko, EdD, RN, CS); Johns Hopkins University, Baltimore, R01-MH059552 (J Raymond DePaulo, MD, Melvin McInnis, MD and Dean MacKinnon, MD); University of Pennsylvania, Philadelphia, R01-MH61686 (Doug Levinson, MD [GenRED coordinator], Madeleine M Gladis, PhD, Kathleen Murphy-Eberenz, PhD and Peter Holmans, PhD [University of Wales College of Medicine]); University of Iowa, Iowa City, R01-MH059542 (Raymond Crowe, MD and William H Coryell, MD); Rush University Medical Center, Chicago, R01-MH059541-05 (William Scheftner, MD, Rush-Presbyterian).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F S Goes.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirooznia, M., Wang, T., Avramopoulos, D. et al. High-throughput sequencing of the synaptome in major depressive disorder. Mol Psychiatry 21, 650–655 (2016). https://doi.org/10.1038/mp.2015.98

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.98

This article is cited by

Search

Quick links