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Fluoxetine effects on molecular, cellular and behavioral
endophenotypes of depression are driven by the living
environment
S Alboni1,7, RM van Dijk2,7, S Poggini3, G Milior4, M Perrotta5, T Drenth2, N Brunello1, DP Wolfer2,6, C Limatola4,5, I Amrein2, F Cirulli3,
L Maggi4,8 and I Branchi2,3,8

Selective serotonin reuptake inhibitors (SSRIs) represent the most common treatment for major depression. However, their efficacy
is variable and incomplete. In order to elucidate the cause of such incomplete efficacy, we explored the hypothesis positing that
SSRIs may not affect mood per se but, by enhancing neural plasticity, render the individual more susceptible to the influence of the
environment. Consequently, SSRI administration in a favorable environment promotes a reduction of symptoms, whereas in a
stressful environment leads to a worse prognosis. To test such hypothesis, we exposed C57BL/6 mice to chronic stress in order to
induce a depression-like phenotype and, subsequently, to fluoxetine treatment (21 days), while being exposed to either an
enriched or a stressful condition. We measured the most commonly investigated molecular, cellular and behavioral
endophenotypes of depression and SSRI outcome, including depression-like behavior, neurogenesis, brain-derived neurotrophic
factor levels, hypothalamic–pituitary–adrenal axis activity and long-term potentiation. Results showed that, in line with our
hypothesis, the endophenotypes investigated were affected by the treatment according to the quality of the living environment. In
particular, mice treated with fluoxetine in an enriched condition overall improved their depression-like phenotype compared with
controls, whereas those treated in a stressful condition showed a distinct worsening. Our findings suggest that the effects of SSRI
on the depression- like phenotype is not determined by the drug per se but is induced by the drug and driven by the environment.
These findings may be helpful to explain variable effects of SSRI found in clinical practice and to device strategies aimed at
enhancing their efficacy by means of controlling environmental conditions.
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INTRODUCTION
Major depression constitutes an enormous medical, individual,
societal and economical challenge. Depression afflicts up to
10%–15% of the population worldwide. It is the leading cause of
years lost, owing to disability1 and costs over 120 billion euros in
Europe and over US$83 billion in North America annually.2

Selective serotonin reuptake inhibitors (SSRIs) are the most
commonly prescribed drugs for the treatment of depression.
However, their efficacy is variable and incomplete: 60%–70%
of patients do not experience remission and 30%–40% do not
show a significant response.3 Some authors have even claimed
that their effects do not differ from placebo.4 Nevertheless, most
psychiatrists prescribe SSRIs.
One of the main reasons for the discordant results and views

about SSRI efficacy is the poor comprehension of their action at
molecular and cellular level. Studies performed on animal models
of depression provide contradictory results concerning the
physiological and behavioral modifications induced by SSRIs. For
instance, many studies show that SSRI administration reduces

depression-like behavior,5,6 enhances neurogenesis,7 increases
brain-derived neurotrophic factor (BDNF) levels,5,8 reduces
hypothalamic–pituitary–adrenal (HPA) axis activity9,10 and
heightens long-term potentiation (LTP).11 However, many others
reported no or opposite effects concerning the same endpoints:
behavior,12–15 neurogenesis,16–20 BDNF levels,21–26 HPA axis
activity27,28 and LTP.29,30

A new hypothesis, named the undirected susceptibility to
change hypothesis, posits that SSRI treatment does not drive
changes in mood per se but, by increasing brain plasticity,
creates a window of opportunity for a change that is driven
by the quality of the environment.31 In particular, the increase in
serotonin levels, induced by SSRIs, enhances neural plasticity
and thus renders the individual more susceptible to the
environment. The main consequence of such hypothesis is
the lack of univocal outcome of SSRI administration: in a
favorable environment, treatment leads to a reduction of
symptoms; by contrast, in a stressful environment, it leads to a
worse prognosis.
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In support to the undirected susceptibility to change hypoth-
esis, a number of evidences from both clinical and preclinical
studies indicate that increased serotonin levels lead to greater
brain plasticity and higher susceptibility to the environment.31–34

For instance, clinical studies investigating variations of the
serotonin-transporter-linked polymorphic region, 5-HTTLPR, found
that individuals bearing the s/s variant, which is associated to
higher brain extracellular levels of serotonin, show an enhanced
susceptibility to the quality of the living environment compared
with individuals bearing the l/l variant.32,35,36 In addition, SSRI
treatment consequences on selected endpoints, such as vulner-
ability to obesity, have been shown to be dependent on the
quality of the environment.37,38

Here we investigated the undirected susceptibility to change
hypothesis assessing the modifications in molecular and cellular
processes previously shown to be affected by SSRI administration
including BDNF expression, neurogenesis, LTP and behavior. In
particular, we focused on the hippocampus that is a brain region
deeply involved in neural plasticity, major depression and
antidepressant effect. To this purpose, we exposed C57BL/6 mice
first to 14 days of stress, in order to induce a depression-like
phenotype, and subsequently to 21 days of either (i) an enriched
condition or (ii) a stressful condition, while being administered
with fluoxetine (FLX) or vehicle (VEH). Our prediction was that the
trajectories of molecular, cellular and behavioral modifications
induced by FLX treatment depend on the living environment. In
particular, FLX mice were expected to be more sensitive to the
quality of the environment than VEH mice, displaying a better
recovery from a depression-like profile when exposed to an
enriched condition and a faster worsening when exposed to a
stressful condition.

MATERIALS AND METHODS
All experiments were conducted in conformity with European Directive
2010/63/EU and the Italian D.lg. 4.05.2014, n. 26. C57BL/6 male mice were
housed in the Intellicage system (TSE System, NewBehavior, Zürich,
Switzerland) in which they were exposed to either enriched or stressful
condition.

Treatment
FLX (Fluoxetine HCl, Santa Cruz, CA, USA) was dissolved in water and
saccharin solution, and delivered via drinking water for 3 weeks.

Behavioral tests
Behavioral endpoints investigated included liking- and wanting-type
anhedonia, cognitive bias activity. The experimental procedures used in
the present study to phenotype behavior have been selected, as they are
automatically administered by the Intellicage. This allowed avoiding any
bias or stress due to the experimenter.

Immunohistochemistry and volume measurements
Animals were killed, perfused transcardially and hippocampi removed and
fixed. Ki67 and doublecortin-positive cells were estimated. Volume was
measured in series adjacent to immuno-stained sections.

RNA extraction, RT-PCR and real-time PCR
Total RNA was obtained from the hippocampi. After RNA reverse
transcription, real-time PCR was performed. Sample were normalized to
the housekeeping gene GAPDH.39

Protein extraction and western blotting
Western blotting analyses were performed on total, cytoplasmic or
nuclear-enriched fractions obtained from the hippocampi and medial
prefrontal cortices. Data were normalized to β-tubulin.

Electrophysiological analysis
Electrophysiological measurements were performed on 350 μm transverse
hippocampal slices. N/n refers to the number of slices on total number of
mice analyzed.

Statistical analysis
Two different experiments aimed at comparing VEH versus FLX-treated
mice, independently in the enriched and in the stressful condition, were
performed. One-way analysis of variance, regression analysis, Student’s
t-test or, when data were non-normally distributed, non-parametric
analyses were used.
For details, see Supplementary Materials.

RESULTS
Opposite effects of FLX treatment on depression-like behavior in
enriched and stressful conditions
Many studies showed that SSRI administration affects depression-
like behavior.7,40 However, most of these did not consider the
quality of the environment in which the experimental subjects
live. To assess the relevance of the living environment in
determining treatment outcome, we performed two independent
experiments to investigate the effects of FLX administered in an
enriched and a stressful environment. First, all mice were exposed
to two weeks of chronic stress, which significantly induced
anhedonic behavior (F(1,12) = 17.897, P= 0.0012) and increased
corticosterone levels (U= 5000, n1 = 5, n2 = 8, P= 0.0281;
Supplementary Figure S1). Afterwards, mice were treated for
3 weeks while housed in either the enriched or the stress
condition. In each condition, we compared VEH vs FLX-treated
mice. Our results show that FLX treatment has opposite outcomes
in the two environments. In the enriched condition, it improved
depression-like behavior. In particular, although no difference in
liking-type anhedonia (saccharin preference) was found
(Figure 1c), FLX mice showed a significant reduced wanting-type
anhedonia after 1 week (F(1,14) = 4.000, P= 0.0486) and a trend
toward reduction after 3 weeks of treatment (progressive ratio;
Figure 1d) compared with VEH mice. In addition, FLX mice showed
a higher optimistic bias, responding significantly more often to the
ambiguous stimulus (F(1,9) = 5.615, P= 0.0419; Figure 1e). By
contrast, in the stressful condition, FLX administration worsened
depression-like phenotype. FLX mice showed a significant
reduction in liking-type anhedonia at the end of the treatment
period (F(1,45) = 17.528, P= 0.0001; Figures 1c), a significant
increase in wanting-type anhedonia after both 1 and 3 weeks
(respectively, Fs(1,19) = 7.069, 7.094, ps = 0.0155, 0.0154; Figure 1d)
and no difference in cognitive bias (Figure 1e). The latter result is
not in line with previous data, indicating that mice treated with
SSRI show an increased preference for the sweet solution.5,6

Nonetheless, a number of other authors found increased
anhedonia following SSRI administration.12–15 It is worth noting
that this inconsistency could be due to the fact that several
studies used sucrose instead of saccharin to assess anhedonia.
This is a major limitation, because SSRIs affect metabolism leading
to an increased caloric intake and thus to an increased preference
for sucrose that is independent from the anhedonic state. No
difference in activity was found between VEH and FLX mice in
both the enriched and stressful conditions (Supplementary Figure
S2). In addition, the amount of liquid (water+saccharin solution;
average: 9.5 ml per day per mouse) drank by the VEH and FLX
mice did not differ in both the enriched and the stressful
condition. The average amount of FLX administered to each FLX
mouse was 0.76 mg per day.
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FLX treatment in a stress condition leads to reduced proliferation
and decreased CA1 volume
Impaired hippocampal neurogenesis has been linked to
depression.41 In animal models, a reduction of hippocampal
neurogenesis has been shown to be induced by stress and
rescued by SSRI treatment.7,42 However, recent data suggest that
FLX may not be effective in enhancing neurogenesis16,17 or even
reduce it.16–19,43,44 Similar contradictory results have been found
for the effects of SSRI on hippocampal volumetric reduction,
which is considered a further feature of depression.45 Overall, we
found that FLX has no effect on neurogenesis in the enriched
condition, but leads to detrimental consequences on proliferation
in the stressful condition (Figure 2a and b). In particular, although
doublecortin cell number is not affected, the number of
proliferating cells (that is, Ki67-positive cell number) was reduced
across the entire hippocampus in FLX compared with VEH mice in
the stressful condition (main effect of treatment, F(1,19) = 4.472,
P= 0.0479). With regard to volumetric changes, we found that,
although the interaction volume × longitudinal axis (septal, mid
and temporal) missed to reach statistical significance
(F(1,38) = 2.106, P= 0.1357), Tukey’s post-hoc analysis revealed
that FLX mice show a significant reduction of CA1 volume in the
septal part compared with VEH mice in the stressful condition
(Po0.05, Figure 2c and d).

FLX effects on antidepressant-related pathways and HPA axis
activity depend on the quality of the environment
Enhancement of signaling pathways involving mitogen-activated
protein kinase,46,47 cAMP response element-binding protein
(CREB)48,49 and BDNF50 is thought to be a critical feature of
antidepressant action. Our results show that FLX treatment
overall potentiates these pathways in the enriched condition,
while leading even to an opposite effect in the stressful
condition.
Although, in the enriched condition, the FLX-induced

increase of the phosphoERK2/ERK2 ratio in the hippocampal

cytoplasmic fraction missed to reach statistical significance
(t= 1.765, P= 0.1030), in the stressful condition a reduction
in ERK 1/2 phosphorylation was specifically observed in
the hippocampi of FLX compared with VEH mice (t= − 2.928,
P= 0.0118; Figure 3a). This effect was mainly due to a 30%
reduction in phosho-ERK 1/2 levels and no change in ERK
1/2 levels was observed (data not shown). The nuclear phospho-
CREB\CREB ratio was not affected by FLX in both environmental
conditions (Figure 3b); however, a significant reduction of
CREB levels was found in the total extract obtained from
hippocampi of FLX mice exposed to the stressful condition
(t= − 2.281, P= 0.0435; Figure 3b). When FLX was administered in
enriched condition, we found increased hippocampal levels of
mature BDNF (t = 2.242, P= 0.0488), accordingly associated to
decreased levels of its precursor pro BDNF (t= − 2.459, P= 0.0276;
Figure 3c). No effect was observed in the levels of both
BDNF forms in the stressful condition (Figure 3c). In line with
protein data, we found hippocampal BDNF expression to be
increased in FLX compared with VEH mice (t = 2.511, P= 0.0332)
in the enriched condition (Figure 3d). No significant effect was
observed in the expression of the coding BDNF exon common to
all the transcripts in stress FLX mice (Figure 3d). High BDNF levels
induced by antidepressants have been reported to increase
p11 (also known as S100a10) expression,51 which is a protein
involved in depression and antidepressant response.52

Accordingly, we found increased levels of p11 mRNA (t= 2.508,
P= 0.0290) in the hippocampus of FLX compared with VEH mice
in the enriched but not in the stressful condition (Figure 3e).
In order to assess whether the environment-dependent effects of
FLX on antidepressant-related pathways concern specifically
the hippocampus or other brain areas as well, we measured ERK,
CREB and BDNF protein levels in the medial prefrontal
cortex. The results obtained, although not fully overlapping with
those obtained in the hippocampus, are in line with the
hypothesis of the present study. In particular, in
the medial prefrontal cortex, FLX treatment enhanced
pERK1/2–total ERK1/2 ratio in the nuclear fraction in enrichment
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(t= 2.466; P= 0.0431), while reducing it in the stressful condition
(t= − 2.163; P= 0.0483). In addition, in the latter condition,
drug treatment reduced CREB phosphorylation in the nuclear
fraction (t= − 3.0761; P= 0.02759) and mature BDNF protein
levels in the total extract (t= − 3.076; P= 0.0430; Supplementary
Figure S3).
Hyperactivation of the HPA axis, which leads to increased

glucocorticoid levels, is a common feature in major
depression.9,53,54 HPA axis hyperactivity and blunted feedback
recover after chronic treatment with antidepressants and are
associated to an improvement of depressive symptoms.55

Accordingly, our analysis of the differences in corticosterone levels
before and after treatment revealed that the levels of this hormone
were reduced by FLX, compared with VEH, in the enriched
(F(1,11) = 5.262, P=0.0425) but not in the stressful condition
(Figure 3g). Glucocorticoids exert their effects on the hippocampus,
including regulation of HPA axis activity and synaptic plasticity, by
binding two receptor systems: the high-affinity mineralocorticoid
receptor and the low-affinity glucocorticoid receptor (GR).56,57

Activation of hippocampal GR causes inhibition of the HPA axis.58

Several groups demonstrated that a chronic FLX treatment
increases GR mRNA expression in the hippocampus, possibly
contributing to restore HPA axis feedback.59 Although not affecting
GR and mineralocorticoid receptor mRNA expression in the
enriched condition, FLX reduced GR, but not mineralocorticoid
receptor, mRNA levels (t=− 2.558, P= 0.0228) in the stressful
condition (Figure 3h). The latter result could lead to a blunted HPA
feedback, which is consistent with the lack of reduction in
corticosterone levels in mice exposed to stress, following FLX
treatment.

The interaction between the quality of the environment and FLX
determines treatment outcome on neurotransmitter receptors
and LTP
Beside its effects on intracellular pathways, FLX has been reported
to affect hippocampal plasticity modulating neurotransmitter
receptor number and function, and modifying synaptic
LTP.11,29,30,60–64 As AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazo-
lepropionic acid) and NMDA (N-methyl-D-aspartate) receptor
subunits are regulated during activity-dependent plasticity, we
evaluated the effects of FLX on excitatory receptor subunits in
both enriched and stressful conditions. Overall, we did not
observe any significant FLX effect on total hippocampal GluR1
and GluR2 subunit levels in both environmental conditions
(Figure 4a). As AMPA receptor functionality is regulated by
phosphorylation, we measured the phosphorylation levels on
the GluR1 and GluR2 subunits. Following FLX administration,
Ser845 phosphorylation on GluR1 subunit was increased in the
enriched (t = 2.490, P= 0.0259) and decreased in the
stressful condition (t = − 2.236, P= 0.0434; Figure 4b). By contrast,
phosphorylation at Ser831-GluR1 and Ser880-GluR2 were not
affected in both environmental conditions (Figure 4b).
Such phosphorylation profile is in line with previous findings
reporting that Ser845 is a specific target of FLX.65 Although
AMPA receptor phosphorylation is critical for synaptic plasticity,
the functional consequences of the phosphorylation site
modulation depend on the previous history of the synapse.66

This complexity makes the relationship between phosphoryla-
tion and consequences on plasticity processes in different
environmental conditions difficult to predict. With regard to

Enrich VEH
FLX

Stress

K
i6

7 
ce

ll 
nu

m
be

r (
%

)

0

90

100

110

*

VEH
FLX

Enrich Stress

VEH
FLX

D
C

X
 c

el
l n

um
be

r (
%

)

0

90

100

110

Enrich Stress

C
A

1 
vo

lu
m

e 
(%

)

0

90

100

110

120

Sept Mid TempSept Mid Temp

Giemsa Ki67 DCX

*

S

S

S

T

T

T

TempSeptal Mid

CA1

CA1

CA1

DGCA3

Figure 2. Fluoxetine (FLX) treatment administered in stressful condition leads to a reduction of proliferation and hippocampal volume. (a)
Representative sections of histological (Giemsa) and immunohistochemical (Ki67 and doublecortin (DCX) counterstained with hematoxylin)
stainings in the mid region of the matrix-embedded, straightened hippocampal dentate gyrus. Scale bar: 250 μm, insert scale bar: 10 μm. (b)
Ki67 cell number was not significantly affected by FLX administered in enriched condition, whereas it was significantly decreased in FLX
compared with vehicle (VEH) mice when treatment was administered in the stressful condition, *Po0.05 vs VEH group. (c) DCX cell number
was not significantly affected by FLX administered in both conditions. (d) Schematic drawing of the straightened hippocampus. Gray part
represents CA1. The analysis has been performed independently in the septal, mid and temporal part of the hippocampus, because it has
been reported that the effects of SSRIs and the environment are region specific. Boundaries of hippocampal fields are illustrated in the
Giemsa-stained section of the mid region of the straightened hippocampus cut perpendicular to the septotemporal axis. S, septal; T, temporal.
(e) Analysis of anatomically aligned data of volumetric measurements showed no significant differences between groups in enriched
condition. However, septal CA1 volume was significantly reduced in FLX compared with VEH when treatment was administered in stressful
condition. *Po0.05. n= 8 in all groups. Data shown as mean± s.e.m.

The outcome of fluoxetine treatment
S Alboni et al

555

Molecular Psychiatry (2017), 552 – 561



NMDA receptor, we found that FLX increases GluN2A and
GluNR1 subunits (respectively, t = 2.811, P= 0.0147 and t= 2.389,
P= 0.0342) in the stress condition, while reducing GluN2B
(t= − 2.830, P= 0.0151) in enrichment (Figure 4c). Given that
the increase in the GluNR2A/GluNR2B ratio and the insertion of
the GluNR1 subunits have been associated to an enhanced LTP,67

data concerning the NMDA receptor function in the stressful
condition are in line with an increase of this form of plasticity
induced by FLX.
As FLX has been reported to selectively affect excitatory

neurotransmitter receptors and plasticity in specific subregions
of the hippocampus,29 we decided to explore the functional
implication of its administration in a selected and
well-characterized activity-dependent cellular paradigm, the LTP,
in the CA1 hippocampal output area. NMDA-dependent LTP
processes occurring in this region are reportedly affected by
FLX11,29 and by the quality of the living environment.68,69 We first
measured the strength of CA3-CA1 connections by recording
normalized input–output (I–O) curves, finding no difference
between VEH and FLX groups in both environmental conditions
(Supplementary Figure S4a). However, FLX treatment induced an
overall increase in the absolute size of field excitatorypostsynaptic

potential (1.6 ± 0.1 in the stressful condition and 2.1 ± 0.2 in the
enriched condition). In particular, the distribution of field
excitatorypostsynaptic potential data, across the entire range of
the stimulus intensities, were significantly different in FLX
compared with VEH mice (P= 0.0024). These findings are in line
with previous studies showing an FLX-mediated enhancement of
the synaptic strength.11,29,30,34,64

We next analyzed the intrinsic excitability of the CA1 pyramidal
cells by measuring the stimulation intensity at which a population
spike is first observed. The intensity (data not shown) as well
as the size of the field excitatorypostsynaptic potential slope that
correlated to the occurrence of population spikes (Supplementary
Figure S4b) were similar in VEH and FLX mice in both
environmental conditions. Paired-pulse ratio, generally associated
with changes in transmitter release probability,70 was significantly
increased in FLX compared with VEH mice in the stressful
(t=− 3.306, P= 0.002) but not in the enriched condition.
Finally, we explored CA1 plasticity inducing LTP by weak

stimulation (single 100 Hz burst) of Shaffer Collateral inputs.69 In
the enriched condition, the experimental groups did not differ,
both exhibiting a robust LTP (Figure 4f), in line with the literature
reporting that enrichment enhances LTP amplitude evoked by a

Stress

Enrich

Stress

Enrich

VEH FLX VEH FLX

0

50

100

150

0

50

100

150

StressEnrich

StressEnrich

proBDNF
mBDNF

pCREB

Nuc

Tubuline

CREB

CREB

Cyt

pERK1
pERK2
ERK1
ERK2

pERK1
pERK2
ERK1
ERK2

Δ 
C

O
R

T
 (

%
 v

s.
 V

E
H

)

0

1

2

3

0

1

2

3

p11

**

pERK1
/ERK1

pERK2
/ERK2

pCREB
/CREB

CREB

*

Cytoplasm Nucleus

*

GR MR

0

0.5

1

0

0.5

1

*

0

-50

-150

-100

*

*

*

pro
BDNF

m
BDNF

VEH

FLX

0

0.5

1

1.5

0

0.5

1

1.5

BDNF

*

O
D

 (
%

)
O

D
 (

%
)

m
R

N
A

 
(f

ol
d 

ch
an

ge
s)

m
R

N
A

 
(f

ol
d 

ch
an

ge
s)

pERK2
/ERK2

pERK1
/ERK1

m
R

N
A

(f
ol

d 
ch

an
ge

s)
m

R
N

A
(f

ol
d 

ch
an

ge
s)

Figure 3. Fluoxetine (FLX) treatment affects hippocampal signaling pathways and HPA axis activity according to the quality of the
environment. (a) No significant treatment effect was found for pERK1/ERK1 and in pERK2/ERK2 ratios in the enriched condition. Whereas both
ratios were reduced in the cytoplasmic, but not in the nuclear, fraction in FLX mice in the stressful condition. (b) No treatment effect on CREB
phosphorylation was observed in the nuclear enriched fraction in both environmental conditions. No difference in the total hippocampal
CREB protein levels was found in the enriched condition, but it was reduced by treatment in the stressful condition. (c) In enriched conditions,
reduced proBDNF and increased mBDNF levels were found in FLX mice compared with vehicle (VEH) mice. No difference in the stressful
condition. (d and e) Real-time PCR analysis revealed that BDNF and p11 mRNA levels were significantly increased by FLX in the enriched
condition but were not affected in the stressful condition. (f) Representative western blottings are shown. (g) Corticosterone levels were
significantly reduced by treatment in FLX compared with VEH mice in the enriched but not in the stressful condition. (h) Glucocorticoid
receptor (GR) mRNA expression was reduced by treatment in the stressful condition. No difference for GR expression in the enriched condition
and mineralocorticoid receptor (MR) expression in both condition was found. MR, mineralocorticoid receptor. Corticosterone analysis: VEH,
n= 6; FLX, n= 7. For all the other analyses, n= 8 in all groups. Data shown as mean± s.e.m. *Po0.05 vs respective VEH group.

The outcome of fluoxetine treatment
S Alboni et al

556

Molecular Psychiatry (2017), 552 – 561



weak stimulation.69 In the stressful condition, FLX mice showed a
significantly increased LTP amplitude compared with VEH mice
(t=− 3.813, P= 0.002) that displayed a slight potentiation
following the stimulation (Figure 4f). Overall, these results
demonstrate that also the effects of FLX on short- and long-
term plasticity in the CA1 region are dependent on the quality of
the environment.

In order to study FLX outcome without the influence of
enrichment, we investigated the effects of the drug in the
standard condition. This consisted in exposing mice to chronic
stress for 2 weeks and, afterwards, administering them with either
VEH or FLX for 3 weeks, while housed in a standard laboratory
condition (Supplementary Figure S5a). Overall, the results
obtained are in line with the notion that the shift from an
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uncertain situation (that is, the stress) to a neutral one (that is,
the standard condition) leads to an increase in the ability of
the organism to cope and control the environment and can
thus have beneficial effects (see Lazarus and Folkman71).
Indeed, anhedonic responses and LTP levels overlap in the
standard and the enriched condition. However, in the standard
condition, FLX did not increase BDNF levels, suggesting
that enrichment drives the FLX effects more powerfully than the
improvement associated to the standard condition following
chronic stress (Supplementary Figure S5).

DISCUSSION
The main finding of the present study is that the effects of the SSRI
FLX are highly dependent on the quality of the living environ-
ment. FLX administration in an enriched condition led to a
significant recovery from the depression-like phenotype
compared with VEH, which is in line with the expected effects of
antidepressants.72 However, these effects cannot be ascribed to
drug action per se, but arise from the interaction of the drug with
the quality of the environment, as FLX treatment under stress led
to a worsening of the depression-like phenotype (Table 1).
Such environment-dependent effect is pervasive, as it concerns
most of the phenotypic features analyzed, from molecular
pathways to behavior. It is worth noting that, in line with the
undirected susceptibility to change hypothesis, our results show
that FLX treatment made the experimental subjects more
susceptible to the quality of the environment, be it either
enrichment or stress.
Taking into account the quality of the environment as a

moderator of SSRI treatment outcome may explain the
inconsistency of the findings obtained in previous studies. Indeed,
overlooking the environment as key factor allowing to identify
subgroups of individuals differently responding to treatment73

might have led to the reported contradictory results in
pivotal endpoints of depression-like phenotype, including BDNF
levels,8,21 LTP,11,29 HPA axis activity,9,27 neurogenesis7,16 and
behavior.5,12

Although we found that FLX effects are driven by the quality of
the environment, we did not observe an overlap between neural
and behavioral endpoints modified by FLX in the enriched and
stressful conditions, suggesting that the mechanisms mediating
the improvement and the worsening of the depressive status may
differ (Table 1). For instance, BDNF levels were increased in the
enriched, but not affected in the stressful condition. This is in line
with previous studies31 showing that the levels of this
neurotrophin are modified by FLX treatment in an enriched but
not in a constantly stressful environment. By contrast, other
parameters, such as neurogenesis, were affected only when the
drug was administered in the stressful environment. Although a
number of papers have reported that antidepressant treatment
enhances neurogenesis,42 our results are concordant with an
increasing number of recent studies indicating no effect16,17 or
even a reduction of neurogenesis following antidepressant
administration.18 Overall, while suggesting a novel conceptual
framework to understand SSRI action, the present findings confirm

the involvement in the depression-like phenotype of molecular
pathways or mechanisms already demonstrated to be implicated
in major depression, including BDNF expression, HPA axis activity
and neurogenesis. The modifications in these endpoints here
reported accompany the improvement or worsening of the
depression-like behavioral phenotype in a manner coherent
with previous studies on the neurobiological substrates of
depression.74,75

With regard to LTP, a primary form of plasticity, we expected
that, in line with our hypothesis, it would have been increased by
FLX treatment. Indeed, our results show that, in the stressful
condition, FLX significantly enhances plasticity in the CA1 region
in comparison with VEH. However, in the enriched condition, both
groups exhibited a robust LTP amplitude, in line with the literature
reporting increased LTP levels following enrichment.69 Such
potentiation might have masked the effect of FLX because of a
ceiling effect due to the saturation of LTP magnitude. Our results
on NMDA receptor subunit expression profile, showing an
increase in the GluNR2A/GluNR2B ratio, are concordant with an
increase in neural plasticity induced by FLX administration. Such
modifications in neuronal functionality may represent the
mechanisms underlying the effects of the drug treatment.
Accordingly, it has been shown that chronic FLX induces a
de-differentiation of mature dentate granule neurons in the adult
hippocampus that reinstates high levels of synaptic plasticity
similar to those of the early postnatal phase,76 which is
characterized by a high susceptibility to environmental inputs.77

Further research is warranted to shed light on the molecular
pathways and pathophysiological mechanisms underlying the
different consequences of the FLX–environment interactions. It is
worth noting that the effects of FLX described in the present
paper may represent only part of the action of SSRIs on brain and
behavior, as the serotonergic system has a high molecular
complexity and is involved in a wide range of functions. It should
also be mentioned that the effects of chronic stress are strain
dependent.78 For instance, FLX treatment during chronic stress in
BALB/c mice, a strain widely used to study major depression,
counteracts stress effects, restoring food consumption in the
Cookie test, reverting deterioration of the coat state and
reinstating HPA axis negative feedback and neurogenesis in the
dentate gyrus.79,80

Few clinical studies have investigated the influence of the
environment on antidepressant action in patients and the findings
show that living conditions, for example, socioeconomic status
and lifestyle, modulate the effects of antidepressants.81 In
particular, in line with the present results, these studies suggest
that antidepressants are more effective in patients having a
better quality of life. Findings from the Sequenced Treatment
Alternatives to Relieve Depression study, which investigated the
response to the SSRI citalopram in over 4000 depressed patients,
showed that participants having better living conditions, because
they are employed or are with higher levels of education or
income, had higher remission rates. By contrast, longer index
episodes, more concurrent psychiatric disorders, more general
medical disorders and lower baseline function and quality of life

Table 1. Effects of fluoxetine, compared with vehicle, in the enriched and the stressful conditions

Reduction in liking-type
anhedonia

Reduction in wanting-type
anhedonia

Cognitive
bias

Neurogenesis
(Ki67)

ERK
signaling

CREB
signaling

BDNF
levels

Reduction in
CORT levels

LTP

Enriched
condition

– ↑ ↑ – – – ↑ ↑ –

Stressful
condition

↓ ↓ – ↓ ↓ ↓ – – ↓
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were associated with lower remission rates.3,82 In addition,
antidepressant treatment has been reported to lead more often
to an unfavorable outcome in people living in worst conditions. In
particular, patients in the poor-income census tract were
significantly more likely to report suicidal ideation than those in
the middle- and high- income census tracts.82,83 Overall, these
findings show that the quality of the living environment, such as
adverse economic conditions, affects the effectiveness of
antidepressant treatment. Therefore, the quality of the living
environment acts as moderator of treatment response. Taking into
account this moderator in the clinical practice may specify for
whom or under what conditions the treatment works and may
suggest to clinicians which of their patients might be most
responsive to the treatment and for which patients other, more
appropriate, treatments might be sought.73

The conceptual shift in considering the modification in
serotonin levels from being the cause of depression to acting as
a permissive factor in the onset of and the recovery from the
psychopathology allows to reconcile experimental and clinical
data that apparently do not fit together.31 For instance, the
currently available theoretical framework leads to the paradox that
the same mechanism of action has two opposite outcomes. In
particular, high extracellular serotonin levels are beneficial when
induced by SSRI administration, but confer a high risk to develop
psychopathology when associated to the s variant of 5-HTTLPR.
This discordant picture can be coherently interpreted in light of
our results and the undirected susceptibility to change hypothesis,
positing that high serotonin levels lead to increased plasticity and
thus to high susceptibility to change, which may promote either
an improvement or a worsening according to the quality of the
environment.
In conclusion, the identification of the living environment as a

moderator of treatment response represents a critical step in
developing a personalized medicine approach aimed at
better matching patients with treatment through selective
enhancement of treatment efficacy and avoiding potential
harmful consequences. The control of the patients’ living
environment could be achieved by training patients to cope
with harsh conditions, for instance, through cognitive behavioral
therapy,62 as it is unlikely that people can rapidly and effectively
change their living milieu. The cost of this approach is limited,
as no new psychoactive molecules need to be developed, while
the benefits for the patients could be substantial.
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