Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The impact of chronic stress on the rat brain lipidome

Abstract

Chronic stress is a major risk factor for several human disorders that affect modern societies. The brain is a key target of chronic stress. In fact, there is growing evidence indicating that exposure to stress affects learning and memory, decision making and emotional responses, and may even predispose for pathological processes, such as Alzheimer’s disease and depression. Lipids are a major constituent of the brain and specifically signaling lipids have been shown to regulate brain function. Here, we used a mass spectrometry-based lipidomic approach to evaluate the impact of a chronic unpredictable stress (CUS) paradigm on the rat brain in a region-specific manner. We found that the prefrontal cortex (PFC) was the area with the highest degree of changes induced by chronic stress. Although the hippocampus presented relevant lipidomic changes, the amygdala and, to a greater extent, the cerebellum presented few lipid changes upon chronic stress exposure. The sphingolipid and phospholipid metabolism were profoundly affected, showing an increase in ceramide (Cer) and a decrease in sphingomyelin (SM) and dihydrosphingomyelin (dhSM) levels, and a decrease in phosphatidylethanolamine (PE) and ether phosphatidylcholine (PCe) and increase in lysophosphatidylethanolamine (LPE) levels, respectively. Furthermore, the fatty-acyl profile of phospholipids and diacylglycerol revealed that chronic stressed rats had higher 38 carbon(38C)-lipid levels in the hippocampus and reduced 36C-lipid levels in the PFC. Finally, lysophosphatidylcholine (LPC) levels in the PFC were found to be correlated with blood corticosterone (CORT) levels. In summary, lipidomic profiling of the effect of chronic stress allowed the identification of dysregulated lipid pathways, revealing putative targets for pharmacological intervention that may potentially be used to modulate stress-induced deficits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lupien SJ, McEwen BS, Gunnar MR, Heim C . Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 2009; 10: 434–445.

    Article  CAS  Google Scholar 

  2. Sousa N, Almeida OF . Disconnection and reconnection: the morphological basis of (mal)adaptation to stress. Trends Neurosci 2012; 35: 742–751.

    CAS  Google Scholar 

  3. Cerqueira JJ, Mailliet F, Almeida OF, Jay TM, Sousa N . The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci 2007; 27: 2781–2787.

    Article  CAS  Google Scholar 

  4. Pinto V, Costa JC, Morgado P, Mota C, Miranda A, Bravo FV et al. Differential impact of chronic stress along the hippocampal dorsal-ventral axis. Brain Struct Func 2014 (e-pub ahead of print), 6 February 2014.

  5. Dias-Ferreira E, Sousa JC, Melo I, Morgado P, Mesquita AR, Cerqueira JJ et al. Chronic stress causes frontostriatal reorganization and affects decision-making. Science 2009; 325: 621–625.

    Article  CAS  Google Scholar 

  6. Roozendaal B, McEwen BS, Chattarji S . Stress memory and the amygdala. Nat Rev Neurosci 2009; 10: 423–433.

    CAS  Google Scholar 

  7. Catania C, Sotiropoulos I, Silva R, Onofri C, Breen KC, Sousa N et al. The amyloidogenic potential and behavioral correlates of stress. Mol Psychiatry 2009; 14: 95–105.

    Article  CAS  Google Scholar 

  8. Bessa JM, Ferreira D, Melo I, Marques F, Cerqueira JJ, Palha JA et al. The mood- improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry 2009; 148: 764–773, 739.

    Article  Google Scholar 

  9. Sousa N, Almeida OFX . Disconnection and reconnection: the morphological basis of (mal) adaptation to stress. Trends Neurosci 2012; 35: 742–751.

    Article  CAS  Google Scholar 

  10. Sousa N, Cerqueira JJ, Almeida OFX . Corticosteroid receptors and neuroplasticity. Brain Res Rev 2008; 57: 561–570.

    Article  CAS  Google Scholar 

  11. Sousa N, Lukoyanov NV, Madeira MD, Almeida OFX, Paula-Barbosa MM . Reorganization of the morphology of hippocampal neurites and synapses after stress- induced damage correlates with behavioral improvement. Neuroscience 2000; 97: 253–266.

    Article  CAS  Google Scholar 

  12. Sousa N, Almeida OFX . Corticosteroids: sculptors of the hippocampal formation. Rev Neurosci 2002; 13: 59–84.

    Article  CAS  Google Scholar 

  13. Malcher-Lopes R, Franco A, Tasker JG . Glucocorticoids shift arachidonic acid metabolism toward endocannabinoid synthesis: a non-genomic anti-inflammatory switch. Eur J Pharmacol 2008; 583: 322–339.

    Article  CAS  Google Scholar 

  14. Patel S, Kingsley PJ, Mackie K, Marnett LJ, Winder DG . Repeated homotypic stress elevates 2-arachidonoylglycerol levels and enhances short-term endocannabinoid signaling at inhibitory synapses in basolateral amygdala. Neuropsychopharmacology 2009; 34: 2699–2709.

    Article  CAS  Google Scholar 

  15. Gulbins E, Palmada M, Reichel M, Luth A, Bohmer C, Amato D et al. Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs. Nat Med 2013; 19: 934–938.

    Article  CAS  Google Scholar 

  16. Bessa JM, Mesquita AR, Oliveira M, Pego JM, Cerqueira JJ, Palha JA et al. A trans- dimensional approach to the behavioral aspects of depression. Front Behav Neurosci 2009; 3: 1.

    Article  Google Scholar 

  17. Chan RB, Oliveira TG, Cortes EP, Honig LS, Duff KE, Small SA et al. Comparative lipidomic analysis of mouse and human brain with alzheimer disease. J Biol Chem 2012; 287: 2678–2688.

    Article  CAS  Google Scholar 

  18. Dumont M, Stack C, Elipenahli C, Jainuddin S, Gerges M, Starkova N et al. Bezafibrate administration improves behavioral deficits and tau pathology in P301S mice. Hum Mol Genet 2012; 21: 5091–5105.

    Article  CAS  Google Scholar 

  19. Wenk MR . Lipidomics: new tools and applications. Cell 2010; 143: 888–895.

    Article  CAS  Google Scholar 

  20. Carta M, Lanore F, Rebola N, Szabo Z, Da Silva SV, Lourenco J et al. Membrane lipids tune synaptic transmission by direct modulation of presynaptic potassium channels. Neuron 2014; 81: 787–799.

    Article  CAS  Google Scholar 

  21. Lisowski P, Wieczorek M, Goscik J, Juszczak GR, Stankiewicz AM, Zwierzchowski L et al. Effects of Chronic Stress on Prefrontal Cortex Transcriptome in Mice Displaying Different Genetic Backgrounds. J Mol Neurosci 2013; 50: 33–57.

    Article  CAS  Google Scholar 

  22. Gregg LC, Jung KM, Spradley JM, Nyilas R, Suplita RL 2nd, Zimmer A et al. Activation of type 5 metabotropic glutamate receptors and diacylglycerol lipase-alpha initiates 2- arachidonoylglycerol formation and endocannabinoid-mediated analgesia. J Neurosci 2012; 32: 9457–9468.

    Article  CAS  Google Scholar 

  23. Faria R, Santana MM, Aveleira CA, Simoes C, Maciel E, Melo T et al. Alterations in phospholipidomic profile in the brain of mouse model of depression induced by chronic unpredictable stress. Neuroscience 2014; 273: 1–11.

    Article  CAS  Google Scholar 

  24. Hill MN, Patel S, Carrier EJ, Rademacher DJ, Ormerod BK, Hillard CJ et al. Downregulation of endocannabinoid signaling in the hippocampus following chronic unpredictable stress. Neuropsychopharmacology 2005; 30: 508–515.

    Article  CAS  Google Scholar 

  25. Hillard CJ . Stress regulates endocannabinoid-CB1 receptor signaling. Semin Immunol 2014; 26: 380–388.

    Article  CAS  Google Scholar 

  26. Lee LH, Shui G, Farooqui AA, Wenk MR, Tan CH, Ong WY . Lipidomic analyses of the mouse brain after antidepressant treatment: evidence for endogenous release of long- chain fatty acids? Int J Neuropsychopharmacol 2009; 12: 953–964.

    Article  CAS  Google Scholar 

  27. Gault CR, Obeid LM, Hannun YA . An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med and Biol 2010; 688: 1–23.

    Article  CAS  Google Scholar 

  28. Kornhuber J, Muller CP, Becker KA, Reichel M, Gulbins E . The ceramide system as a novel antidepressant target. Trends Pharmacol Sci 2014; 35: 293–304.

    Article  CAS  Google Scholar 

  29. Simons K, Gerl MJ . Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 2010; 11: 688–699.

    Article  CAS  Google Scholar 

  30. Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G . Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011; 111: 6130–6185.

    Article  CAS  Google Scholar 

  31. Lee LH, Tan CH, Shui G, Wenk MR, Ong WY . Role of prefrontal cortical calcium independent phospholipase A(2) in antidepressant-like effect of maprotiline. Int J Neuropsychopharmacol 2012; 15: 1087–1098.

    Article  CAS  Google Scholar 

  32. Sundaram JR, Chan ES, Poore CP, Pareek TK, Cheong WF, Shui G et al. Cdk5/p25- induced cytosolic PLA2-mediated lysophosphatidylcholine production regulates neuroinflammation and triggers neurodegeneration. J Neurosci 2012; 32: 1020–1034.

    Article  CAS  Google Scholar 

  33. Green P, Gispan-Herman I, Yadid G . Increased arachidonic acid concentration in the brain of Flinders Sensitive Line rats, an animal model of depression. J Lipid Res 2005; 46: 1093–1096.

    Article  CAS  Google Scholar 

  34. Green P, Anyakoha N, Yadid G, Gispan-Herman I, Nicolaou A . Arachidonic acid- containing phosphatidylcholine species are increased in selected brain regions of a depressive animal model: implications for pathophysiology. Prostaglandins Leukot Essent Fatty Acids 2009; 80: 213–220.

    Article  CAS  Google Scholar 

  35. Lamaziere A, Richard D, Barbe U, Kefi K, Bausero P, Wolf C et al. Differential distribution of DHA-phospholipids in rat brain after feeding: A lipidomic approach. Prostaglandins Leukot Essent Fatty Acids 2011; 84: 7–11.

    Article  CAS  Google Scholar 

  36. Little SJ, Lynch MA, Manku M, Nicolaou A . Docosahexaenoic acid-induced changes in phospholipids in cortex of young and aged rats: a lipidomic analysis. Prostaglandins Leukot Essent Fatty Acids 2007; 77: 155–162.

    Article  CAS  Google Scholar 

  37. Rao JS, Ertley RN, DeMar JC Jr ., Rapoport SI, Bazinet RP, Lee HJ . Dietary n-3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex. Mol Psychiatry 2007; 12: 151–157.

    Article  CAS  Google Scholar 

  38. Strokin M, Sergeeva M, Reiser G . Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br J Pharmacol 2003; 139: 1014–1022.

    Article  CAS  Google Scholar 

  39. Tiemeier H, van Tuijl HR, Hofman A, Kiliaan AJ, Breteler MM . Plasma fatty acid composition and depression are associated in the elderly: the Rotterdam Study. Am J Clin Nutr 2003; 78: 40–46.

    Article  CAS  Google Scholar 

  40. Ricart-Jane D, Rodriguez-Sureda V, Benavides A, Peinado-Onsurbe J, Lopez-Tejero MD, Llobera M . Immobilization stress alters intermediate metabolism and circulating lipoproteins in the rat. Metabolism 2002; 51: 925–931.

    Article  CAS  Google Scholar 

  41. Chuang JC, Cui H, Mason BL, Mahgoub M, Bookout AL, Yu HG et al. Chronic socialdefeat stress disrupts regulation of lipid synthesis. J Lipid Res 2010; 51: 1344–1353.

    Article  CAS  Google Scholar 

  42. Giovacchini G, Chang MC, Channing MA, Toczek M, Mason A, Bokde AL et al. Brain incorporation of [11C]arachidonic acid in young healthy humans measured with positron emission tomography. J Cereb Blood Flow Metab 2002; 22: 1453–1462.

    Article  CAS  Google Scholar 

  43. Riederer M, Ojala PJ, Hrzenjak A, Graier WF, Malli R, Tritscher M et al. Acyl chain- dependent effect of lysophosphatidylcholine on endothelial prostacyclin production. J Lipid Res 2010; 51: 2957–2966.

    Article  CAS  Google Scholar 

  44. Kim WJ, Lee MJ, Park MA, Jung JS, Uhlinger DJ, Kwak JY . Dexamethasone enhances phospholipase D activity in M-1 cells. Exp Molecular Med 2000; 32: 170–177.

    Article  CAS  Google Scholar 

  45. Kerr DS, Campbell LW, Thibault O, Landfield PW . Hippocampal glucocorticoid receptor activation enhances voltage-dependent Ca2+ conductances: relevance to brain aging. Proc Natl Acad Sci U S A 1992; 89: 8527–8531.

    Article  CAS  Google Scholar 

  46. Kim JH, Lee BD, Kim Y, Lee SD, Suh PG, Ryu SH . Cytosolic phospholipase A2-mediated regulation of phospholipase D2 in leukocyte cell lines. J Immunol 1999; 163: 5462–5470.

    CAS  PubMed  Google Scholar 

  47. Oliveira TG, Di Paolo G . Phospholipase D in brain function and Alzheimer's disease. Biochim Biophys Acta 2010; 1801: 799–805.

    Article  CAS  Google Scholar 

  48. Oliveira TG, Chan RB, Tian H, Laredo M, Shui G, Staniszewski A et al. Phospholipase d2 ablation ameliorates Alzheimer's disease-linked synaptic dysfunction and cognitive deficits. J Neurosci 2010; 30: 16419–16428.

    Article  CAS  Google Scholar 

  49. Feng PF, Huang CF . Phospholipase D-mTOR signaling is compromised in a rat model of depression. J Psychiatr Res 2013; 47: 579–585.

    Article  Google Scholar 

  50. Song C, Zhang XY, Manku M . Increased phospholipase a2 activity and inflammatory response but decreased nerve growth factor expression in the olfactory bulbectomized rat model of depression: effects of chronic ethyl-eicosapentaenoate treatment. J Neurosci 2009; 29: 14–22.

    Article  Google Scholar 

  51. Tatebayashi Y, Nihonmatsu-Kikuchi N, Hayashi Y, Yu X, Soma M, Ikeda K . Abnormal fatty acid composition in the frontopolar cortex of patients with affective disorders. Transl Psychiatry 2012; 2: e204.

    Article  CAS  Google Scholar 

  52. Schwarz E, Prabakaran S, Whitfield P, Major H, Leweke FM, Koethe D et al. High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides. J Proteome Res 2008; 7: 4266–4277.

    Article  CAS  Google Scholar 

  53. Taha AY, Cheon Y, Ma K, Rapoport SI, Rao JS . Altered fatty acid concentrations in prefrontal cortex of schizophrenic patients. J Psychiatr Res 2013; 47: 636–643.

    Article  Google Scholar 

  54. Rao JS, Kim HW, Harry GJ, Rapoport SI, Reese EA . Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in the postmortem frontal cortex from schizophrenia patients. Schizophr Res 2013; 147: 24–31.

    Article  Google Scholar 

Download references

Acknowledgements

Funding by Fundação para a Ciência e Tecnologia (PTDC/SAU-NMC/118971/2010) and by the North Region Operational Program (ON.2-O Novo Norte), under Quadro de Referência Estratégico Nacional (QREN) and through Fundo Europeu de Desenvolvimento Regional (FEDER). GDP is funded by NIH grants R01 NS056049 and P50 AG008702 (to Scott Small).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Sousa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, T., Chan, R., Bravo, F. et al. The impact of chronic stress on the rat brain lipidome. Mol Psychiatry 21, 80–88 (2016). https://doi.org/10.1038/mp.2015.14

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.14

This article is cited by

Search

Quick links