Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Proteomic and genomic evidence implicates the postsynaptic density in schizophrenia

Subjects

Abstract

The postsynaptic density (PSD) contains a complex set of proteins of known relevance to neuropsychiatric disorders, and schizophrenia specifically. We enriched for this anatomical structure, in the anterior cingulate cortex, of 20 schizophrenia samples and 20 controls from the Stanley Medical Research Institute, and used unbiased shotgun proteomics incorporating label-free quantitation to identify differentially expressed proteins. Quantitative investigation of the PSD revealed more than 700 protein identifications and 143 differentially expressed proteins. Prominent among these were altered expression of proteins involved in clathrin-mediated endocytosis (CME) (Dynamin-1, adaptor protein 2) and N-methyl-D-aspartate (NMDA)-interacting proteins such as CYFIP2, SYNPO, SHANK3, ESYT and MAPK3 (all P<0.0015). Pathway analysis of the differentially expressed proteins implicated the cellular processes of endocytosis, long-term potentiation and calcium signaling. Both single-gene and gene-set enrichment analyses in genome-wide association data from the largest schizophrenia sample to date of 13 689 cases and 18 226 controls show significant association of HIST1H1E and MAPK3, and enrichment of our PSD proteome. Taken together, our data provide robust evidence implicating PSD-associated proteins and genes in schizophrenia, and suggest that within the PSD, NMDA-interacting and endocytosis-related proteins contribute to disease pathophysiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Bayes A, Collins MO, Croning MD, van de Lagemaat LN, Choudhary JS, Grant SG . Comparative study of human and mouse postsynaptic proteomes finds high compositional conservation and abundance differences for key synaptic proteins. PLoS One 2012; 7: e46683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grant SG . Synaptopathies: diseases of the synaptome. Curr Opin Neurobiol 2012; 22: 522–529.

    Article  CAS  PubMed  Google Scholar 

  3. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68, image 45.

    CAS  PubMed  Google Scholar 

  4. Kristiansen LV, Patel SA, Haroutunian V, Meador-Woodruff JH . Expression of the NR2B-NMDA receptor subunit and its Tbr-1/CINAP regulatory proteins in postmortem brain suggest altered receptor processing in schizophrenia. Synapse 2010; 64: 495–502.

    Article  CAS  PubMed  Google Scholar 

  5. Bayes A, van de Lagemaat LN, Collins MO, Croning MD, Whittle IR, Choudhary JS et al. Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci 2011; 14: 19–21.

    Article  CAS  PubMed  Google Scholar 

  6. Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 2012; 17: 142–153.

    Article  CAS  PubMed  Google Scholar 

  7. Nithianantharajah J, Komiyama NH, McKechanie A, Johnstone M, Blackwood DH St, Clair D et al. Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nat Neurosci 2013; 16: 16–24.

    Article  CAS  PubMed  Google Scholar 

  8. Behan AT, Byrne C, Dunn MJ, Cagney G, Cotter DR . Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatry 2009; 14: 601–613.

    Article  CAS  PubMed  Google Scholar 

  9. Funk AJ, Rumbaugh G, Harotunian V, McCullumsmith RE, Meador-Woodruff JH . Decreased expression of NMDA receptor-associated proteins in frontal cortex of elderly patients with schizophrenia. Neuroreport 2009; 20: 1019–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. English JA, Manadas B, Scaife C, Cotter DR, Dunn MJ . Partitioning the proteome: phase separation for targeted analysis of membrane proteins in human post-mortem brain. PLoS One 2012; 7: e39509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Werner HB, Jahn O . Myelin matters: proteomic insights into white matter disorders. Expert Rev Proteomics 2010; 7: 159–164.

    Article  CAS  PubMed  Google Scholar 

  12. Hahn CG, Banerjee A, Macdonald ML, Cho DS, Kamins J, Nie Z et al. The post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses. PLoS One 2009; 4: e5251.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Clinton SM, Meador-Woodruff JH . Abnormalities of the NMDA Receptor and Associated Intracellular Molecules in the Thalamus in Schizophrenia and Bipolar Disorder. Neuropsychopharmacology 2004; 29: 1353–1362.

    Article  CAS  PubMed  Google Scholar 

  14. Gupta DS, McCullumsmith RE, Beneyto M, Haroutunian V, Davis KL, Meador-Woodruff JH . Metabotropic glutamate receptor protein expression in the prefrontal cortex and striatum in schizophrenia. Synapse 2005; 57: 123–131.

    Article  CAS  PubMed  Google Scholar 

  15. Hammond JC, McCullumsmith RE, Funk AJ, Haroutunian V, Meador-Woodruff JH . Evidence for abnormal forward trafficking of AMPA receptors in frontal cortex of elderly patients with schizophrenia. Neuropsychopharmacology 2010; 35: 2110–2119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kenny EM, Cormican P, Furlong S, Heron E, Kenny G, Fahey C et al. Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders. Mol Psychiatry advance online publication, 15 October 2013; doi:10.1038/mp.2013.127.

  17. Barry H, Hardiman O, Healy DG, Keogan M, Moroney J, Molnar PP et al. Anti-NMDA receptor encephalitis: an important differential diagnosis in psychosis. Br J Psychiatry 2011; 199: 508–509.

    Article  PubMed  Google Scholar 

  18. Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 2008; 31: 234–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kristiansen LV, Huerta I, Beneyto M, Meador-Woodruff JH . NMDA receptors and schizophrenia. Curr Opin Pharmacol 2007; 7: 48–55.

    CAS  PubMed  Google Scholar 

  20. Choi YB, Lipton SA . Redox modulation of the NMDA receptor. Cell Mol Life Sci 2000; 57: 1535–1541.

    Article  CAS  PubMed  Google Scholar 

  21. Neeman G, Blanaru M, Bloch B, Kremer I, Ermilov M, Javitt DC et al. Relation of plasma glycine, serine, and homocysteine levels to schizophrenia symptoms and medication type. Am J Psychiatry 2005; 162: 1738–1740.

    Article  PubMed  Google Scholar 

  22. English JA, Pennington K, Dunn MJ, Cotter DR . The neuroproteomics of schizophrenia. Biol Psychiatry 2011; 69: 163–172.

    Article  CAS  PubMed  Google Scholar 

  23. Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM et al. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 2007; 13: 1102–1117.

    Article  PubMed  Google Scholar 

  24. Schmid EM, McMahon HT . Integrating molecular and network biology to decode endocytosis. Nature 2007; 448: 883–888.

    Article  CAS  PubMed  Google Scholar 

  25. Schubert KO, Föcking M, Prehn JH, Cotter DR . Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder? Mol Psychiatry advance online publication, 11 October 2011; doi:10.1038/mp.2011.123.

  26. Ungewickell EJ, Hinrichsen L . Endocytosis: clathrin-mediated membrane budding. Curr Opin Cell Biol 2007; 19: 417–425.

    Article  CAS  PubMed  Google Scholar 

  27. Doherty GJ, McMahon HT . Mechanisms of endocytosis. Annu Rev Biochem 2009; 78: 857–902.

    Article  CAS  PubMed  Google Scholar 

  28. Föcking M, Dicker P, English JA, Schubert KO, Dunn MJ, Cotter DR . Common proteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3. Arch Gen Psychiatry 2011; 68: 477–488.

    Article  PubMed  Google Scholar 

  29. Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45: 1150–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mexal S, Berger R, Adams CE, Ross RG, Freedman R, Leonard S . Brain pH has a significant impact on human postmortem hippocampal gene expression profiles. Brain Res 2006; 1106: 1–11.

    Article  CAS  PubMed  Google Scholar 

  31. Vawter MP, Tomita H, Meng F, Bolstad B, Li J, Evans S et al. Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Mol Psychiatry 2006; 11 7: 663–679.

    Article  CAS  Google Scholar 

  32. Hakansson K, Pozzi L, Usiello A, Haycock J, Borrelli E, Fisone G . Regulation of striatal tyrosine hydroxylase phosphorylation by acute and chronic haloperidol. European Journal of Neuroscience 2004; 20: 1108–1112.

    Article  PubMed  Google Scholar 

  33. Carlin RK, Grab DJ, Cohen RS, Siekevitz P . Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J Cell Biol 1980; 86: 831–845.

    Article  CAS  PubMed  Google Scholar 

  34. Kennedy MB . Signal-processing machines at the postsynaptic density. Science 2000; 290: 750–754.

    Article  CAS  PubMed  Google Scholar 

  35. Benjamini Y, Hochberg Y . Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society 1995; Series B: 289–300.

    Google Scholar 

  36. Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM et al. A versatile gene-based test for genome-wide association studies. Am J Hum Genet 2010; 87: 139–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang K, Li M, Hakonarson H . Analysing biological pathways in genome-wide association studies. Nat Rev Genet 2010; 11: 843–854.

    Article  CAS  PubMed  Google Scholar 

  39. Wang J, Duncan D, Shi Z, Zhang B, WEB-based GEne SeT . AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res 2013; 41: W77–W83.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang B, Kirov S, Snoddy J . WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 2005; 33: W741–W748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wieffer M, Maritzen T, Haucke V . SnapShot: endocytic trafficking. Cell 2009; 137: 382 e381–383.

    Article  Google Scholar 

  42. Sklar P, Ripke S, Scott LJ, Andreassen OA, Cichon S, Craddock N et al. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 2011; 43: 977–983.

    Article  CAS  PubMed Central  Google Scholar 

  43. Anderson CA, Boucher G, Lees CW, Franke A, D'Amato M, Taylor KD et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 2011; 43: 246–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, Steinthorsdottir V et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 2012; 44: 981–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Engel SR, Creson TK, Hao Y, Shen Y, Maeng S, Nekrasova T et al. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 2013; 381: 1371–1379.

    Article  Google Scholar 

  46. Sheng M, Sala C . PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 2001; 24: 1–29.

    Article  CAS  PubMed  Google Scholar 

  47. Collins MO, Husi H, Yu L, Brandon JM, Anderson CN, Blackstock WP et al. Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 2006; 97: 16–23.

    Article  CAS  PubMed  Google Scholar 

  48. Trinidad JC, Thalhammer A, Specht CG, Lynn AJ, Baker PR, Schoepfer R et al. Quantitative analysis of synaptic phosphorylation and protein expression. Mol Cell Proteomics 2008; 7: 684–696.

    Article  CAS  PubMed  Google Scholar 

  49. Malenka RC, LTP Bear MF . and LTD: an embarrassment of riches. Neuron 2004; 44: 5–21.

    Article  CAS  PubMed  Google Scholar 

  50. Balu DT, Li Y, Puhl MD, Benneyworth MA, Basu AC, Takagi S et al. Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proc Natl Acad Sci USA 2013; 110: E2400–2409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cooke SF, Bear MF . Stimulus-selective response plasticity in the visual cortex: an assay for the assessment of pathophysiology and treatment of cognitive impairment associated with psychiatric disorders. Biol Psychiatry 2012; 71: 487–495.

    Article  PubMed  Google Scholar 

  52. English JA, Dicker P, Föcking M, Dunn MJ, Cotter DR . 2-D DIGE analysis implicates cytoskeletal abnormalities in psychiatric disease. Proteomics 2009; 9: 3368–3382.

    Article  CAS  PubMed  Google Scholar 

  53. Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM et al. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 2008; 13: 1102–1117.

    Article  CAS  PubMed  Google Scholar 

  54. Eastwood SL, Harrison PJ . Markers of glutamate synaptic transmission and plasticity are increased in the anterior cingulate cortex in bipolar disorder. Biol Psychiatry 2010; 67: 1010–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lewis DA, Hashimoto T, Morris HM . Cell and receptor type-specific alterations in markers of GABA neurotransmission in the prefrontal cortex of subjects with schizophrenia. Neurotox Res 2008; 14: 237–248.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Petersen A, Alvarez C, DeClaire S, Tintle NL . Assessing methods for assigning SNPs to genes in gene-based tests of association using common variants. PLoS One 2013; 8: e62161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    CAS  PubMed  Google Scholar 

  58. Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y et al. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet 2012; 44: 1365–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Belzeaux R, Bergon A, Jeanjean V, Loriod B, Formisano-Treziny C, Verrier L et al. Responder and nonresponder patients exhibit different peripheral transcriptional signatures during major depressive episode. Transl Psychiatry 2012; 2: e185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Costain G, Lionel AC, Merico D, Forsythe P, Russell K, Lowther C et al. Pathogenic rare copy number variants in community-based schizophrenia suggest a potential role for clinical microarrays. Hum Mol Genet 2013; 22: p 4485–4501.

    Article  PubMed  Google Scholar 

  61. Steinberg S, de Jong S, Mattheisen M, Costas J, Demontis D, Jamain S et al. Common variant at 16p11.2 conferring risk of psychosis. Mol Psychiatry 2014; 19: 108–114.

    Article  CAS  PubMed  Google Scholar 

  62. Engel SR, Creson TK, Hao Y, Shen Y, Maeng S, Nekrasova T et al. The extracellular signal-regulated kinase pathway contributes to the control of behavioral excitement. Mol Psychiatry 2009; 14: 448–461.

    Article  CAS  PubMed  Google Scholar 

  63. Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, Krezel W et al. Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 2002; 34: 807–820.

    Article  CAS  PubMed  Google Scholar 

  64. Goudriaan A, de Leeuw C, Ripke S, Hultman CM, Sklar P, Sullivan PF et al. Specific Glial Functions Contribute to Schizophrenia Susceptibility. Schizophr Bull 2014; 40: p 925–935.

    Article  Google Scholar 

  65. Lee PH, Perlis RH, Jung JY, Byrne EM, Rueckert E, Siburian R et al. Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder. Transl Psychiatry 2012; 2: e184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fernandes CP, Christoforou A, Giddaluru S, Ersland KM, Djurovic S, Mattheisen M et al. A genetic deconstruction of neurocognitive traits in schizophrenia and bipolar disorder. PLoS One 2013; 8: e81052.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hill WD, Davies G, Van de Lagemaat LN, Christoforou A, Marioni RE, Fernandes CP et al. Human cognitive ability is influences by genetic variation in components of postsynaptic signalling complexes assembled by NMDA receptors and MAGUK proteins. Transl Psychiatry 2014; 4, e341; doi:10.1038/tp.2013.114.

  68. Ersland KM, Christoforou A, Stansberg C, Espeseth T, Mattheisen M, Mattingsdal M et al. Gene-based analysis of regionally enriched cortical genes in GWAS data sets of cognitive traits and psychiatric disorders. PLoS One advance online publication, 7 January 2014; doi:10.1038/tp.2013.114 (e-pub ahead of print).

  69. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014; 506: 185–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014; 506: 179–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Eastwood SL, Harrison PJ . Synaptic pathology in the anterior cingulate cortex in schizophrenia and mood disorders. A review and a Western blot study of synaptophysin, GAP-43 and the complexins. Brain Res Bull 2001; 55: 569–578.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Post-mortem brains were donated by the Stanley Foundation Brain Bank Consortium courtesy of Llewellyn B Bigelow, Maree J Webster and staff. We thank the donors, Daire Quinn, Sinead Kinsella, Alison Gordon and Magdalena Hryniewiecka, for help with western blotting and animal work; Andrew Pocklington and George Kirov for the PSD gene lists, and Aniket Misra, Stuart MacGregor and Dave Hill for help with the gene-based analysis. We thank the Psychiatric Genetics Consortium, DIAGRAM (DIAbetes Genetics Replication And Meta-analysis) Consortium and International Inflammatory Bowel Disease Genetics Consortium (IIBDGC) for providing genome-wide association study data. Access to and use of mass spectrometry instrumentation and computing facilities at the Conway Institute is gratefully acknowledged. This work was supported by a Brain and Behavior Research Foundation Award (to MF), the SMRI and the Irish Health Research Board through a Health Research Award (to DC, GC and MF) and a Health Research Board Clinician Scientist Award (to DC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Föcking or D R Cotter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Föcking, M., Lopez, L., English, J. et al. Proteomic and genomic evidence implicates the postsynaptic density in schizophrenia. Mol Psychiatry 20, 424–432 (2015). https://doi.org/10.1038/mp.2014.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.63

This article is cited by

Search

Quick links