Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice

Abstract

Pharmacologic blockade of monoamine oxidase A (MAOA) or serotonin transporter (5-HTT) has antidepressant and anxiolytic efficacy in adulthood. Yet, genetically conferred MAOA or 5-HTT hypoactivity is associated with altered aggression and increased anxiety/depression. Here we test the hypothesis that increased monoamine signaling during development causes these paradoxical aggressive and affective phenotypes. We find that pharmacologic MAOA blockade during early postnatal development (P2–P21) but not during peri-adolescence (P22−41) increases anxiety- and depression-like behavior in adult (>P90) mice, mimicking the effect of P2–21 5-HTT inhibition. Moreover, MAOA blockade during peri-adolescence, but not P2–21 or P182-201, increases adult aggressive behavior, and 5-HTT blockade from P22–P41 reduced adult aggression. Blockade of the dopamine transporter, but not the norepinephrine transporter, during P22–41 also increases adult aggressive behavior. Thus, P2–21 is a sensitive period during which 5-HT modulates adult anxiety/depression-like behavior, and P22–41 is a sensitive period during which DA and 5-HT bi-directionally modulate adult aggression. Permanently altered DAergic function as a consequence of increased P22–P41 monoamine signaling might underlie altered aggression. In support of this hypothesis, we find altered aggression correlating positively with locomotor response to amphetamine challenge in adulthood. Proving that altered DA function and aggression are causally linked, we demonstrate that optogenetic activation of VTA DAergic neurons increases aggression. It therefore appears that genetic and pharmacologic factors impacting dopamine and serotonin signaling during sensitive developmental periods can modulate adult monoaminergic function and thereby alter risk for aggressive and emotional dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ansorge MS, Hen R, Gingrich JA . Neurodevelopmental origins of depressive disorders. Curr Opin Pharmacol 2007; 7: 8–17.

    Article  CAS  PubMed  Google Scholar 

  2. Leonardo ED, Hen R . Anxiety as a developmental disorder. Neuropsychopharmacology 2008; 33: 134–140.

    Article  PubMed  Google Scholar 

  3. Beneyto M, Lewis DA . Insights into the neurodevelopmental origin of schizophrenia from postmortem studies of prefrontal cortical circuitry. Int J Dev Neurosci 2011; 29: 295–304.

    Article  PubMed  Google Scholar 

  4. Hensch TK . Critical period regulation. Annu Rev Neurosci 2004; 27: 549–579.

    Article  CAS  PubMed  Google Scholar 

  5. Knudsen EI . Sensitive periods in the development of the brain and behavior. J Cogn Neurosci 2004; 16: 1412–1425.

    Article  PubMed  Google Scholar 

  6. Krishnan KR . Revisiting monoamine oxidase inhibitors. J Clin Psychiatry 2007; 68: 35–41.

    CAS  PubMed  Google Scholar 

  7. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA . Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 1993; 262: 578–580.

    Article  CAS  PubMed  Google Scholar 

  8. Buckholtz JW, Meyer-Lindenberg A . MAOA and the neurogenetic architecture of human aggression. Trends Neurosci 2008; 31: 120–129.

    Article  CAS  PubMed  Google Scholar 

  9. Tadic A, Rujescu D, Szegedi A, Giegling I, Singer P, Moller HJ et al. Association of a MAOA gene variant with generalized anxiety disorder, but not with panic disorder or major depression. Am J Med Genet B Neuropsychiatr Genet 2003; 117B: 1–6.

    Article  CAS  PubMed  Google Scholar 

  10. Karere GM, Kinnally EL, Sanchez JN, Famula TR, Lyons LA, Capitanio JP . What is an ‘adverse’ environment? Interactions of rearing experiences and MAOA genotype in rhesus monkeys. Biol Psychiatry 2009; 65: 770–777.

    Article  CAS  PubMed  Google Scholar 

  11. Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 1995; 268: 1763–1766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scott AL, Bortolato M, Chen K, Shih JC . Novel monoamine oxidase A knock out mice with human-like spontaneous mutation. Neuroreport 2008; 19: 739–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Godar SC, Bortolato M, Frau R, Dousti M, Chen K, Shih JC . Maladaptive defensive behaviours in monoamine oxidase A-deficient mice. Int J Neuropsychopharmacol 2010; 14: 1–13.

    Google Scholar 

  14. Gaspar P, Cases O, Maroteaux L . The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 2003; 4: 1002–1012.

    Article  CAS  PubMed  Google Scholar 

  15. Homberg JR, Schubert D, Gaspar P . New perspectives on the neurodevelopmental effects of SSRIs. Trends Pharmacol Sci 2010; 31: 60–65.

    Article  CAS  PubMed  Google Scholar 

  16. Souza BR, Tropepe V . The role of dopaminergic signalling during larval zebrafish brain development: a tool for investigating the developmental basis of neuropsychiatric disorders. Rev Neurosci 2011; 22: 107–119.

    Article  CAS  PubMed  Google Scholar 

  17. Rebsam A, Seif I, Gaspar P . Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knock-out mice. J Neurosci 2002; 22: 8541–8552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cases O, Vitalis T, Seif I, De Maeyer E, Sotelo C, Gaspar P . Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 1996; 16: 297–307.

    Article  CAS  PubMed  Google Scholar 

  19. Vitalis T, Cases O, Callebert J, Launay JM, Price DJ, Seif I et al. Effects of monoamine oxidase A inhibition on barrel formation in the mouse somatosensory cortex: determination of a sensitive developmental period. J Comp Neurol 1998; 393: 169–184.

    Article  CAS  PubMed  Google Scholar 

  20. Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA . Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 2004; 306: 879–881.

    Article  CAS  PubMed  Google Scholar 

  21. Ansorge MS, Morelli E, Gingrich JA . Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice. J Neurosci 2008; 28: 199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen K, Cases O, Rebrin I, Wu W, Gallaher TK, Seif I et al. Forebrain-specific expression of monoamine oxidase A reduces neurotransmitter levels, restores the brain structure, and rescues aggressive behavior in monoamine oxidase A-deficient mice. J Biol Chem 2007; 282: 115–123.

    Article  CAS  PubMed  Google Scholar 

  23. Hirate K, Kuribara H . Characteristics of the ambulation-increasing effect of GBR-12909, a selective dopamine uptake inhibitor, in mice. Jpn J Pharmacol 1991; 55: 501–511.

    Article  CAS  PubMed  Google Scholar 

  24. Backman CM, Malik N, Zhang Y, Shan L, Grinberg A, Hoffer BJ et al. Characterization of a mouse strain expressing Cre recombinase from the 3' untranslated region of the dopamine transporter locus. Genesis 2006; 44: 383–390.

    Article  CAS  PubMed  Google Scholar 

  25. Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A, Fujisawa S et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 2012; 15: 793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lira A, Zhou M, Castanon N, Ansorge MS, Gordon JA, Francis JH et al. Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol Psychiatry 2003; 54: 960–971.

    Article  CAS  PubMed  Google Scholar 

  27. Underwood MD, Arango V, Bakalian MJ, Ruggiero DA, Mann JJ . Dorsal raphe nucleus serotonergic neurons innervate the rostral ventrolateral medulla in rat. Brain Res 1999; 824: 45–55.

    Article  CAS  PubMed  Google Scholar 

  28. Vitalis T, Fouquet C, Alvarez C, Seif I, Price D, Gaspar P et al. Developmental expression of monoamine oxidases A and B in the central and peripheral nervous systems of the mouse. J Comp Neurol 2002; 442: 331–347.

    Article  CAS  PubMed  Google Scholar 

  29. de Almeida RM, Ferrari PF, Parmigiani S, Miczek KA . Escalated aggressive behavior: dopamine, serotonin and GABA. Eur J Pharmacol 2005; 526: 51–64.

    Article  CAS  PubMed  Google Scholar 

  30. Holmes A, Murphy DL, Crawley JN . Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol Psychiatry 2003; 54: 953–959.

    Article  CAS  PubMed  Google Scholar 

  31. Richardson-Jones JW, Craige CP, Nguyen TH, Kung HF, Gardier AM, Dranovsky A et al. Serotonin-1A autoreceptors are necessary and sufficient for the normal formation of circuits underlying innate anxiety. J Neurosci 2011; 31: 6008–6018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodriguiz RM, Chu R, Caron MG, Wetsel WC . Aberrant responses in social interaction of dopamine transporter knockout mice. Behav Brain Res 2004; 148: 185–198.

    Article  CAS  PubMed  Google Scholar 

  33. Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 1998; 95: 9991–9996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holmes A, Murphy DL, Crawley JN . Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology (Berl) 2002; 161: 160–167.

    Article  CAS  Google Scholar 

  35. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274: 1527–1531.

    Article  CAS  PubMed  Google Scholar 

  36. Canli T, Lesch KP . Long story short: the serotonin transporter in emotion regulation and social cognition. Nat Neurosci 2007; 10: 1103–1109.

    Article  CAS  PubMed  Google Scholar 

  37. Risch N, Herrell R, Lehner T, Liang KY, Eaves L, Hoh J et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA 2009; 301: 2462–2471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE . Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry 2010; 167: 509–527.

    PubMed  PubMed Central  Google Scholar 

  39. Karg K, Burmeister M, Shedden K, Sen S . The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry 2011; 68: 444–454.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schmidt LG, Sander T, Kuhn S, Smolka M, Rommelspacher H, Samochowiec J et al. Different allele distribution of a regulatory MAOA gene promoter polymorphism in antisocial and anxious-depressive alcoholics. J Neural Transm 2000; 107: 681–689.

    Article  CAS  PubMed  Google Scholar 

  41. Le Francois B, Czesak M, Steubl D, Albert PR . Transcriptional regulation at a HTR1A polymorphism associated with mental illness. Neuropharmacology 2008; 55: 977–985.

    Article  CAS  PubMed  Google Scholar 

  42. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW et al. Role of genotype in the cycle of violence in maltreated children. Science 2002; 297: 851–854.

    Article  CAS  PubMed  Google Scholar 

  43. Zalsman G, Huang YY, Harkavy-Friedman JM, Oquendo MA, Ellis SP, Mann JJ . Relationship of MAO-A promoter (u-VNTR) and COMT (V158M) gene polymorphisms to CSF monoamine metabolites levels in a psychiatric sample of caucasians: A preliminary report. Am J Med Genet B Neuropsychiatr Genet 2005; 132: 100–103.

    Article  Google Scholar 

  44. Bedard AC, Schulz KP, Cook EH Jr., Fan J, Clerkin SM, Ivanov I et al. Dopamine transporter gene variation modulates activation of striatum in youth with ADHD. Neuroimage 2010; 53: 935–942.

    Article  CAS  PubMed  Google Scholar 

  45. Guo G, Roettger ME, Shih JC . Contributions of the DAT1 and DRD2 genes to serious and violent delinquency among adolescents and young adults. Hum Genet 2007; 121: 125–136.

    Article  CAS  PubMed  Google Scholar 

  46. Volavka J, Bilder R, Nolan K . Catecholamines and aggression: the role of COMT and MAO polymorphisms. Ann NY Acad Sci 2004; 1036: 393–398.

    Article  CAS  PubMed  Google Scholar 

  47. Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 2011; 478: 519–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Spear LP . The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 2000; 24: 417–463.

    Article  CAS  PubMed  Google Scholar 

  49. Dawe S, Davis P, Lapworth K, McKetin R . Mechanisms underlying aggressive and hostile behavior in amphetamine users. Curr Opin Psychiatry 2009; 22: 269–273.

    Article  PubMed  Google Scholar 

  50. Sokolov BP, Schindler CW, Cadet JL . Chronic methamphetamine increases fighting in mice. Pharmacol Biochem Behav 2004; 77: 319–326.

    Article  CAS  PubMed  Google Scholar 

  51. Martin SP, Smith EO, Byrd LD . Effects of dominance rank on d-amphetamine-induced increases in aggression. Pharmacol Biochem Behav 1990; 37: 493–496.

    Article  CAS  PubMed  Google Scholar 

  52. Sekine Y, Ouchi Y, Takei N, Yoshikawa E, Nakamura K, Futatsubashi M et al. Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Arch Gen Psychiatry 2006; 63: 90–100.

    Article  CAS  PubMed  Google Scholar 

  53. Oberlander TF, Gingrich JA, Ansorge MS . Sustained neurobehavioral effects of exposure to SSRI antidepressants during development: molecular to clinical evidence. Clin Pharmacol Ther 2009; 86: 672–677.

    Article  CAS  PubMed  Google Scholar 

  54. Croen LA, Grether JK, Yoshida CK, Odouli R, Hendrick V . Antidepressant Use During Pregnancy and Childhood Autism Spectrum Disorders. Arch Gen Psychiatry 2011; 68: 1104–1112.

    Article  PubMed  Google Scholar 

  55. Crews F, He J, Hodge C . Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav 2007; 86: 189–199.

    Article  CAS  PubMed  Google Scholar 

  56. Sullivan RM, Landers M, Yeaman B, Wilson DA . Good memories of bad events in infancy. Nature 2000; 407: 38–39.

    Article  CAS  PubMed  Google Scholar 

  57. Moriceau S, Sullivan RM . Maternal presence serves as a switch between learning fear and attraction in infancy. Nat Neurosci 2006; 9: 1004–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 2005; 8: 828–834.

    Article  CAS  PubMed  Google Scholar 

  59. Heinz A, Braus DF, Smolka MN, Wrase J, Puls I, Hermann D et al. Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nat Neurosci 2005; 8: 20–21.

    Article  CAS  PubMed  Google Scholar 

  60. Pellis SM, Pellis VC . The prejuvenile onset of play fighting in laboratory rats (Rattus norvegicus). Dev Psychobiol 1997; 31: 193–205.

    Article  CAS  PubMed  Google Scholar 

  61. Pellis SM, Pasztor TJ . The developmental onset of a rudimentary form of play fighting in C57 mice. Dev Psychobiol 1999; 34: 175–182.

    Article  CAS  PubMed  Google Scholar 

  62. Suomi SJ . Risk, resilience, and gene x environment interactions in rhesus monkeys. Ann N Y Acad Sci 2006; 1094: 52–62.

    Article  PubMed  Google Scholar 

  63. Moffitt TE . Adolescence-limited and life-course-persistent antisocial behavior: a developmental taxonomy. Psychol Rev 1993; 100: 674–701.

    Article  CAS  PubMed  Google Scholar 

  64. Persico AM, Mengual E, Moessner R, Hall FS, Revay RS, Sora I et al. Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. J Neurosci 2001; 21: 6862–6873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li H, Fertuzinhos S, Mohns E, Hnasko TS, Verhage M, Edwards R et al. Laminar and columnar development of barrel cortex relies on thalamocortical neurotransmission. Neuron 2013; 79: 970–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Buckholtz JW, Treadway MT, Cowan RL, Woodward ND, Benning SD, Li R et al. Mesolimbic dopamine reward system hypersensitivity in individuals with psychopathic traits. Nat Neurosci 2010; 13: 419–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Andersen SL, Arvanitogiannis A, Pliakas AM, LeBlanc C, Carlezon WA Jr . Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nat Neurosci 2002; 5: 13–14.

    Article  CAS  PubMed  Google Scholar 

  68. Seo D, Patrick CJ, Kennealy PJ . Role of serotonin and dopamine system interactions in the neurobiology of impulsive aggression and its comorbidity with other clinical disorders. Aggress Violent Behav 2008; 13: 383–395.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D Lin, A Teissier, and C Kellendonk for their critical review of the manuscript. This work was supported by the Sackler Institute for Developmental Psychobiology and the National Institute of Mental Health (R01 MH080116; R00 MH083044; MH062185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A Gingrich.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Q., Teixeira, C., Mahadevia, D. et al. Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Mol Psychiatry 19, 688–698 (2014). https://doi.org/10.1038/mp.2014.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.10

Keywords

This article is cited by

Search

Quick links