Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Disruption of the non-canonical Wnt gene PRICKLE2 leads to autism-like behaviors with evidence for hippocampal synaptic dysfunction

A Corrigendum to this article was published on 05 November 2013

Abstract

Autism spectrum disorders (ASDs) have been suggested to arise from abnormalities in the canonical and non-canonical Wnt signaling pathways. However, a direct connection between a human variant in a Wnt pathway gene and ASD-relevant brain pathology has not been established. Prickle2 (Pk2) is a post-synaptic non-canonical Wnt signaling protein shown to interact with post-synaptic density 95 (PSD-95). Here, we show that mice with disruption in Prickle2 display behavioral abnormalities including altered social interaction, learning abnormalities and behavioral inflexibility. Prickle2 disruption in mouse hippocampal neurons led to reductions in dendrite branching, synapse number and PSD size. Consistent with these findings, Prickle2 null neurons show decreased frequency and size of spontaneous miniature synaptic currents. These behavioral and physiological abnormalities in Prickle2 disrupted mice are consistent with ASD-like phenotypes present in other mouse models of ASDs. In 384 individuals with autism, we identified two with distinct, heterozygous, rare, non-synonymous PRICKLE2 variants (p.E8Q and p.V153I) that were shared by their affected siblings and inherited paternally. Unlike wild-type PRICKLE2, the PRICKLE2 variants found in ASD patients exhibit deficits in morphological and electrophysiological assays. These data suggest that these PRICKLE2 variants cause a critical loss of PRICKLE2 function. The data presented here provide new insight into the biological roles of Prickle2, its behavioral importance, and suggest disruptions in non-canonical Wnt genes such as PRICKLE2 may contribute to synaptic abnormalities underlying ASDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Geschwind D . Autism: searching for coherence. Biol Psychiatry 2007; 62: 949–950.

    Article  PubMed  Google Scholar 

  2. Geschwind DH, Levitt P . Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 2007; 17: 103–111.

    Article  CAS  PubMed  Google Scholar 

  3. Persico AM, Bourgeron T . Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci 2006; 29: 349–358.

    Article  CAS  PubMed  Google Scholar 

  4. Autism, Developmental Disabilities Monitoring Network Surveillance Year Principal I. Prevalence of autism spectrum disorders - autism and developmental disabilities monitoring network, 14 sites, United States, 2008. MMWR Surveill Summ 2012; 61: 1–19.

    Google Scholar 

  5. Canitano R . Epilepsy in autism spectrum disorders. Eur Child Adolesc Psychiatry 2007; 16: 61–66.

    Article  PubMed  Google Scholar 

  6. Fassio A, Patry L, Congia S, Onofri F, Piton A, Gauthier J et al. SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Hum Mol Genet 2011; 20: 2297–2307.

    Article  CAS  PubMed  Google Scholar 

  7. Bourgeron T . A synaptic trek to autism. Curr Opin Neurobiol 2009; 19: 231–234.

    Article  CAS  PubMed  Google Scholar 

  8. Bozzi Y, Casarosa S, Caleo M . Epilepsy as a neurodevelopmental disorder. Front Psychiatry 2012; 3: 19.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 2012; 486: 256–260.

    Article  CAS  PubMed  Google Scholar 

  10. Cuitino L, Godoy JA, Farias GG, Couve A, Bonansco C, Fuenzalida M et al. Wnt-5a modulates recycling of functional GABAA receptors on hippocampal neurons. J Neurosci 2010; 30: 8411–8420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Farias GG, Alfaro IE, Cerpa W, Grabowski CP, Godoy JA, Bonansco C et al. Wnt-5a/JNK signaling promotes the clustering of PSD-95 in hippocampal neurons. J Biol Chem 2009; 284: 15857–15866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Freese JL, Pino D, Pleasure SJ . Wnt signaling in development and disease. Neurobiol Dis 2010; 38: 148–153.

    Article  CAS  PubMed  Google Scholar 

  13. Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC . Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 2005; 8: 34–42.

    Article  CAS  PubMed  Google Scholar 

  14. Varela-Nallar L, Alfaro IE, Serrano FG, Parodi J, Inestrosa NC . Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proc Natl Acad Sci USA. 2010; 107: 21164–21169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fujimura L, Watanabe-Takano H, Sato Y, Tokuhisa T, Hatano M . Prickle promotes neurite outgrowth via the Dishevelled dependent pathway in C1300 cells. Neurosci Lett 2009; 467: 6–10.

    Article  CAS  PubMed  Google Scholar 

  16. Hida Y, Fukaya M, Hagiwara A, Deguchi-Tawarada M, Yoshioka T, Kitajima I et al. Prickle2 is localized in the postsynaptic density and interacts with PSD-95 and NMDA receptors in the brain. J Biochem 2011; 149: 693–700.

    Article  CAS  PubMed  Google Scholar 

  17. Okuda H, Miyata S, Mori Y, Tohyama M . Mouse Prickle1 and Prickle2 are expressed in postmitotic neurons and promote neurite outgrowth. FEBS Lett 2007; 581: 4754–4760.

    Article  CAS  PubMed  Google Scholar 

  18. Tao H, Manak JR, Sowers L, Mei X, Kiyonari H, Abe T et al. Mutations in prickle orthologs cause seizures in flies, mice, and humans. Am J Hum Genet 2011; 88: 138–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li F, Chong ZZ, Maiese K . Vital elements of the Wnt-Frizzled signaling pathway in the nervous system. Curr Neurovasc Res 2005; 2: 331–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tree DR, Shulman JM, Rousset R, Scott MP, Gubb D, Axelrod JD . Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell 2002; 109: 371–381.

    Article  CAS  PubMed  Google Scholar 

  21. Moreau MM, Piguel N, Papouin T, Koehl M, Durand CM, Rubio ME et al. The planar polarity protein Scribble1 is essential for neuronal plasticity and brain function. J Neurosci 2010; 30: 9738–9752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Long JM, LaPorte P, Paylor R, Wynshaw-Boris A . Expanded characterization of the social interaction abnormalities in mice lacking Dvl1. Genes Brain Behav 2004; 3: 51–62.

    Article  CAS  PubMed  Google Scholar 

  23. Okerlund ND, Kivimae S, Tong CK, Peng IF, Ullian EM, Cheyette BN . Dact1 is a postsynaptic protein required for dendrite, spine, and excitatory synapse development in the mouse forebrain. J Neurosci 2010; 30: 4362–4368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lijam N, Paylor R, McDonald MP, Crawley JN, Deng CX, Herrup K et al. Social interaction and sensorimotor gating abnormalities in mice lacking Dvl1. Cell 1997; 90: 895–905.

    Article  CAS  PubMed  Google Scholar 

  25. O'Connor N, Hermelin B . The memory structure of autistic idiot-savant mnemonists. Br J Psychol 1989; 80 (Pt 1): 97–111.

    Article  PubMed  Google Scholar 

  26. Wassink TH, Piven J, Vieland VJ, Huang J, Swiderski RE, Pietila J et al. Evidence supporting WNT2 as an autism susceptibility gene. Am J Med Genet 2001; 105: 406–413.

    Article  CAS  PubMed  Google Scholar 

  27. Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D . Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 2011; 70: 898–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012; 485: 246–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Katoh M . Identification and characterization of human PRICKLE1 and PRICKLE2 genes as well as mouse Prickle1 and Prickle2 genes homologous to Drosophila tissue polarity gene prickle. Int J Mol Med 2003; 11: 249–256.

    CAS  PubMed  Google Scholar 

  30. Narimatsu M, Bose R, Pye M, Zhang L, Miller B, Ching P et al. Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell 2009; 137: 295–307.

    Article  CAS  PubMed  Google Scholar 

  31. McNamara JO . Cellular and molecular basis of epilepsy. J Neurosci 1994; 14: 3413–3425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Auerbach BD, Osterweil EK, Bear MF . Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 2011; 480: 63–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yun SH, Trommer BL . Fragile X mice: reduced long-term potentiation and N-Methyl-D-Aspartate receptor-mediated neurotransmission in dentate gyrus. J Neurosci Res 2011; 89: 176–182.

    Article  CAS  PubMed  Google Scholar 

  34. Murata T, Furushima K, Hirano M, Kiyonari H, Nakamura M, Suda Y et al. ang is a novel gene expressed in early neuroectoderm, but its null mutant exhibits no obvious phenotype. Gene Expr Patterns 2004; 5: 171–178.

    Article  CAS  PubMed  Google Scholar 

  35. Yagi T, Tokunaga T, Furuta Y, Nada S, Yoshida M, Tsukada T et al. A novel ES cell line, TT2, with high germline-differentiating potency. Anal Biochem 1993; 214: 70–76.

    Article  CAS  PubMed  Google Scholar 

  36. Coryell MW, Ziemann AE, Westmoreland PJ, Haenfler JM, Kurjakovic Z, Zha XM et al. Targeting ASIC1a reduces innate fear and alters neuronal activity in the fear circuit. Biol Psychiatry 2007; 62: 1140–1148.

    Article  CAS  PubMed  Google Scholar 

  37. Sfakianos MK, Eisman A, Gourley SL, Bradley WD, Scheetz AJ, Settleman J et al. Inhibition of Rho via Arg and p190RhoGAP in the postnatal mouse hippocampus regulates dendritic spine maturation, synapse and dendrite stability, and behavior. J Neurosci 2007; 27: 10982–10992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Basarsky TA, Parpura V, Haydon PG . Hippocampal synaptogenesis in cell culture: developmental time course of synapse formation, calcium influx, and synaptic protein distribution. J Neurosci 1994; 14 (11 Pt 1): 6402–6411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kalashnikova ELR, Kaur I, Barisone GA, Li B, Trimmer JS, Mohapatra DP et al. SynDIG1: an activity-regulated, AMPA- receptor-interacting transmembrane protein that regulates excitatory synapse development. Neuron 2010; 65: 13.

    Article  Google Scholar 

  40. Wu Y, Wang W, Richerson GB . The transmembrane sodium gradient influences ambient GABA concentration by altering the equilibrium of GABA transporters. J Neurophysiol 2006; 96: 2425–2436.

    Article  CAS  PubMed  Google Scholar 

  41. Matus-Amat P, Higgins EA, Barrientos RM, Rudy JW . The role of the dorsal hippocampus in the acquisition and retrieval of context memory representations. J Neurosci 2004; 24: 2431–2439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Radulovic J, Tronson NC . Molecular specificity of multiple hippocampal processes governing fear extinction. Rev Neurosci 2010; 21: 1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Crawley JN . Designing mouse behavioral tasks relevant to autistic-like behaviors. Ment Retard Dev Disabil Res Rev 2004; 10: 248–258.

    Article  PubMed  Google Scholar 

  44. Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A et al. Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav 2004; 3: 303–314.

    Article  CAS  PubMed  Google Scholar 

  45. Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 2007; 318: 71–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hung AY, Futai K, Sala C, Valtschanoff JG, Ryu J, Woodworth MA et al. Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. J Neurosci 2008; 28: 1697–1708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Toro R, Konyukh M, Delorme R, Leblond C, Chaste P, Fauchereau F et al. Key role for gene dosage and synaptic homeostasis in autism spectrum disorders. Trends Genet 2010; 26: 363–372.

    Article  CAS  PubMed  Google Scholar 

  48. Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM . Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 2004; 119: 1013–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rinaldi T, Silberberg G, Markram H . Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid. Cereb Cortex 2008; 18: 763–770.

    Article  PubMed  Google Scholar 

  50. Smith SE, Zhou YD, Zhang G, Jin Z, Stoppel DC, Anderson MP . Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Transl Med 2011; 3: 103ra97.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K et al. Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 2009; 137: 1235–1246.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Neale BM, Kou Y, Liu L, Ma/'ayan A, Samocha KE, Sabo A et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012; 485: 242–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012; 485: 237–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hyman SE . A glimmer of light for neuropsychiatric disorders. Nature 2008; 455: 890–893.

    Article  CAS  PubMed  Google Scholar 

  55. Ben-Shachar S, Lanpher B, German JR, Qasaymeh M, Potocki L, Nagamani SC et al. Microdeletion 15q13.3: a locus with incomplete penetrance for autism, mental retardation, and psychiatric disorders. J Med Genet 2009; 46: 382–388.

    Article  CAS  PubMed  Google Scholar 

  56. Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 2008; 82: 199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tennessen JA, Bigham AW, O'Connor TD, Fu W, Kenny EE, Gravel S et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 2012; 337: 64–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet 2012; 91: 224–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tuchman R, Cuccaro M . Epilepsy and autism: neurodevelopmental perspective. Curr Neurol Neurosci Rep 2011; 11: 428–434.

    Article  PubMed  Google Scholar 

  60. Etherton MR, Blaiss CA, Powell CM, Sudhof TC . Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci USA 2009; 106: 17998–18003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer RE, Gottmann K et al. Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 2003; 423: 939–948.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Dr Margaret Price, Michael Lutter, Jeff Murray, Mathew State and Dr Vinu Mahajan for comments and insights regarding the paper. Thanks to Chantal Allamargot and Jean Ross in the University of Iowa Microscopy core for their technical assistance. This work was supported by NIH grant 1R01 NS064159-01A1 and a University of Iowa ICTS pilot-award (AGB).

Author contributions

LPS contributed to all experiments, planning and writing of the paper. LL performed all in vitro electrophysiology. YW performed in vivo electrophysiology. LL, LPS and DPM analyzed all the electrophysiology data. EC performed mouse behavioral experiments. YMU and JU performed a part of primary hippocampal neuron cultures. SW performed western blot experiments. JRM, HEL, LP, TW, XY and KM aided in the collection and sequencing of human DNA. PF, NU and SW conducted production and breeding of mice of different genotypes used in this study. AJS assisted in all immunocytochemistry experiments and analysis. GBR, DPM and JM provided reagents, supervised experiments and analysis, and aided in manuscript writing. JAW provided all behavioral equipment. JAW and DPM provided scientific input to the study design. BWD provided statistical analysis for whole-exome sequencing data. All authors contributed to the writing of this manuscript. AGB supervised all aspects of the project design, execution and writing of the paper. The data sets used for the analysis described in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000298.v1.p1, under dbGAP Research Project #4357 (Variation in PRICKLE2 and related Genes in Autism) to AGB. The data set(s) were deposited by the ARRA Autism Sequencing Collaborative, an ARRA funded research initiative. Support for the Autism Sequencing Collaborative was provided by grants: R01-MH089208 awarded to Dr Mark Daly, R01-MH089175 awarded to Dr Richard Gibbs, R01-MH089025 awarded to Joseph Buxbaum, R01-MH089004 awarded to Gerard Schellenberg and R01-MH089482 awarded to James Sutcliffe. Embargo release date for the data was 29 February 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A G Bassuk.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sowers, L., Loo, L., Wu, Y. et al. Disruption of the non-canonical Wnt gene PRICKLE2 leads to autism-like behaviors with evidence for hippocampal synaptic dysfunction. Mol Psychiatry 18, 1077–1089 (2013). https://doi.org/10.1038/mp.2013.71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.71

Keywords

This article is cited by

Search

Quick links