Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

APOE2 enhances neuroprotection against Alzheimer’s disease through multiple molecular mechanisms

Abstract

The common APOE2 gene variant is neuroprotective against Alzheimer’s disease (AD) and reduces risk by nearly 50%. However, the mechanisms by which APOE2 confers neuroprotection are largely unknown. Here we showed that ApoE protein abundance in human postmortem cortex follows an isoform-dependent pattern (E2>E3>E4). We also identified a unique downstream transcriptional profile determined by microarray and characterized by downregulation of long-term potentiation (LTP) related transcripts and upregulation of extracellular matrix (ECM)/integrin-related transcripts in E2 cases and corroborated this finding at the protein level by demonstrating increases in ECM collagens and laminins. In vivo studies of healthy older individuals demonstrated a unique and advantageous biomarker signature in E2 carriers. APOE2 also reduced the risk of mild cognitive impairment to AD conversion by half. Our findings suggest that ApoE2 protein abundance, coupled with its inability to bind to LDLRs, may act to increase amyloid-beta (Ab) clearance. In addition, increased ECM and reduced LTP-related expression results in diminished activity-dependent Ab secretion and/or excitotoxicity, and thus also promotes neuroprotection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Mahley RW, Huang Y . Apolipoprotein e sets the stage: response to injury triggers neuropathology. Neuron 2012; 76: 871–885.

    Article  CAS  Google Scholar 

  2. Mahley RW, Weisgraber KH, Huang Y . Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc Natl Acad Sci USA 2006; 103: 5644–5651.

    Article  CAS  Google Scholar 

  3. Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC Jr et al Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 1994; 7: 180–184.

    Article  CAS  Google Scholar 

  4. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE . Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 2007; 39: 17–23.

    Article  CAS  Google Scholar 

  5. Sudlow C, Martinez Gonzalez NA, Kim J, Clark C . Does apolipoprotein E genotype influence the risk of ischemic stroke, intracerebral hemorrhage, or subarachnoid hemorrhage? Systematic review and meta-analyses of 31 studies among 5961 cases and 17,965 controls. Stroke 2006; 37: 364–370.

    Article  CAS  Google Scholar 

  6. Ghebremedhin E, Schultz C, Botez G, Rub U, Sassin I, Braak E et al. Argyrophilic grain disease is associated with apolipoprotein E epsilon 2 allele. Acta Neuropathol 1998; 96: 222–224.

    Article  CAS  Google Scholar 

  7. Togo T, Cookson N, Dickson DW . Argyrophilic grain disease: neuropathology, frequency in a dementia brain bank and lack of relationship with apolipoprotein E. Brain Pathol 2002; 12: 45–52.

    Article  Google Scholar 

  8. Huang X, Chen PC, Poole C . APOE-[epsilon]2 allele associated with higher prevalence of sporadic Parkinson disease. Neurology 2004; 62: 2198–2202.

    Article  CAS  Google Scholar 

  9. Verpillat P, Camuzat A, Hannequin D, Thomas-Anterion C, Puel M, Belliard S et al. Apolipoprotein E gene in frontotemporal dementia: an association study and meta-analysis. Eur J Hum Genet 2002; 10: 399–405.

    Article  CAS  Google Scholar 

  10. Mahley RW, Huang Y, Rall SC Jr . Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia). Questions, quandaries, and paradoxes. J Lipid Res 1999; 40: 1933–1949.

    CAS  PubMed  Google Scholar 

  11. Bennet AM, Di Angelantonio E, Ye Z, Wensley F, Dahlin A, Ahlbom A et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA 2007; 298: 1300–1311.

    Article  CAS  Google Scholar 

  12. Drenos F, Kirkwood TB . Selection on alleles affecting human longevity and late-life disease: the example of apolipoprotein E. PLoS One 2010; 5: e10022.

    Article  Google Scholar 

  13. Gerdes LU, Jeune B, Ranberg KA, Nybo H, Vaupel JW . Estimation of apolipoprotein E genotype-specific relative mortality risks from the distribution of genotypes in centenarians and middle-aged men: apolipoprotein E gene is a ’frailty gene,’ not a ‘longevity gene'. Genet Epidemiol 2000; 19: 202–210.

    Article  CAS  Google Scholar 

  14. Ward H, Mitrou PN, Bowman R, Luben R, Wareham NJ, Khaw KT et al. APOE genotype, lipids, and coronary heart disease risk: a prospective population study. Arch Intern Med 2009; 169: 1424–1429.

    Article  Google Scholar 

  15. Bu G, Apolipoprotein E . and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 2009; 10: 333–344.

    Article  CAS  Google Scholar 

  16. Di Paolo G, Kim TW . Linking lipids to Alzheimer's disease: cholesterol and beyond. Nat Rev Neurosci 2011 May; 12: 284–296.

    Article  CAS  Google Scholar 

  17. Leduc V, Domenger D, De Beaumont L, Lalonde D, Belanger-Jasmin S, Poirier J . Function and comorbidities of apolipoprotein e in Alzheimer's disease. Int J Alzheimers Dis 2011; 2011: 974361.

    PubMed  PubMed Central  Google Scholar 

  18. Yang DS, Smith JD, Zhou Z, Gandy SE, Martins RN . Characterization of the binding of amyloid-beta peptide to cell culture-derived native apolipoprotein E2, E3, and E4 isoforms and to isoforms from human plasma. J Neurochem 1997; 68: 721–725.

    Article  CAS  Google Scholar 

  19. Kim J, Basak JM, Holtzman DM . The role of apolipoprotein E in Alzheimer's disease. Neuron 2009; 63: 287–303.

    Article  CAS  Google Scholar 

  20. Aleshkov S, Abraham CR, Zannis VI . Interaction of nascent ApoE2, ApoE3, and ApoE4 isoforms expressed in mammalian cells with amyloid peptide beta (1-40). Relevance to Alzheimer's disease. Biochemistry 1997; 36: 10571–10580.

    Article  CAS  Google Scholar 

  21. Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB et al. apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest 2008; 118: 4002–4013.

    Article  CAS  Google Scholar 

  22. Jiang Q, Lee CY, Mandrekar S, Wilkinson B, Cramer P, Zelcer N et al. ApoE promotes the proteolytic degradation of Abeta. Neuron 2008; 58: 681–693.

    Article  CAS  Google Scholar 

  23. Conejero-Goldberg C, Hyde TM, Chen S, Dreses-Werringloer U, Herman MM, Kleinman JE et al. Molecular signatures in post-mortem brain tissue of younger individuals at high risk for Alzheimer's disease as based on APOE genotype. Mol Psychiatry 2011; 16: 836–847.

    Article  CAS  Google Scholar 

  24. Gomar JJ, Bobes-Bascaran MT, Conejero-Goldberg C, Davies P, Goldberg TE . Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to Alzheimer disease in patients in the Alzheimer's disease neuroimaging initiative. Arch Gen Psychiatry 2011; 68: 961–969.

    Article  Google Scholar 

  25. Brendza RP, Bales KR, Paul SM, Holtzman DM . Role of apoE/Abeta interactions in Alzheimer's disease: insights from transgenic mouse models. Mol Psychiatry 2002; 7: 132–135.

    Article  CAS  Google Scholar 

  26. Tolar M, Marques MA, Harmony JA, Crutcher KA . Neurotoxicity of the 22 kDa thrombin-cleavage fragment of apolipoprotein E and related synthetic peptides is receptor-mediated.. J Neurosci. 1997; 17: 5678–5686.

    Article  CAS  Google Scholar 

  27. Harris FM, Brecht WJ, Xu Q, Tesseur I, Kekonius L, Wyss-Coray T et al. Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer's disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc Natl Acad Sci USA 2003; 100: 10966–10971.

    Article  CAS  Google Scholar 

  28. Soares HD, Potter WZ, Pickering E, Kuhn M, Immermann FW, Shera DM et al. Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Arch Neurol 2012; 69: 1310–1317.

    Article  Google Scholar 

  29. Riddell DR, Zhou H, Atchison K, Warwick HK, Atkinson PJ, Jefferson J et al. Impact of apolipoprotein E (ApoE) polymorphism on brain ApoE levels. J Neurosci 2008; 28: 11445–11453.

    Article  CAS  Google Scholar 

  30. Bales KR, Liu F, Wu S, Lin S, Koger D, DeLong C et al. Human APOE isoform-dependent effects on brain beta-amyloid levels in PDAPP transgenic mice. J Neurosci 2009; 29: 6771–6779.

    Article  CAS  Google Scholar 

  31. Xu PT, Schmechel D, Qiu HL, Herbstreith M, Rothrock-Christian T, Eyster M et al. Sialylated human apolipoprotein E (apoEs) is preferentially associated with neuron-enriched cultures from APOE transgenic mice. Neurobiol Dis 1999; 6: 63–75.

    Article  CAS  Google Scholar 

  32. Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012; 485: 512–516.

    Article  CAS  Google Scholar 

  33. Zlokovic BV . Cerebrovascular effects of apolipoprotein E: implications for Alzheimer disease. JAMA Neurol 2013; 70: 440–444.

    Article  Google Scholar 

  34. Chan CS, Weeber EJ, Kurup S, Sweatt JD, Davis RL . Integrin requirement for hippocampal synaptic plasticity and spatial memory. J Neurosci 2003; 23: 7107–7116.

    Article  CAS  Google Scholar 

  35. Reymann KG, Frey JU . The late maintenance of hippocampal LTP: requirements, phases, 'synaptic tagging', 'late-associativity' and implications. Neuropharmacology 2007; 52: 24–40.

    Article  CAS  Google Scholar 

  36. Trommer BL, Shah C, Yun SH, Gamkrelidze G, Pasternak ES, Ye GL et al. ApoE isoform affects LTP in human targeted replacement mice. Neuroreport 2004; 15: 2655–2658.

    Article  CAS  Google Scholar 

  37. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. J Neurosci 2009; 29: 1860–1873.

    Article  CAS  Google Scholar 

  38. Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME et al. Neuronal activity regulates the regional vulnerability to amyloid-beta deposition. Nat Neurosci 2011; 14: 750–756.

    Article  CAS  Google Scholar 

  39. Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC et al. Synaptic activity regulates interstitial fluid amyloid-beta levels In vivo. Neuron 2005; 48: 913–922.

    Article  CAS  Google Scholar 

  40. Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Eilertson K et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-beta. Nat Neurosci 2013; 16: 613–621.

    Article  CAS  Google Scholar 

  41. de Vivo L, Landi S, Panniello M, Baroncelli L, Chierzi S, Mariotti L et al. Extracellular matrix inhibits structural and functional plasticity of dendritic spines in the adult visual cortex. Nat Commun 2013; 4: 1484.

    Article  CAS  Google Scholar 

  42. Wang D, Fawcett J . The perineuronal net and the control of CNS plasticity. Cell Tissue Res 2012; 349: 147–160.

    Article  Google Scholar 

  43. Lendvai D, Morawski M, Negyessy L, Gati G, Jager C, Baksa G et al. Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer's disease. Acta Neuropathol 2013; 125: 215–229.

    Article  CAS  Google Scholar 

  44. Davis GE, Senger DR . Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 2005; 97: 1093–1107.

    Article  CAS  Google Scholar 

  45. Morris JC, Roe CM, Xiong C, Fagan AM, Goate AM, Holtzman DM et al. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol 2010; 67: 122–131.

    Article  CAS  Google Scholar 

  46. Chiang GC, Insel PS, Tosun D, Schuff N, Truran-Sacrey D, Raptentsetsang ST et al. Hippocampal atrophy rates and CSF biomarkers in elderly APOE2 normal subjects. Neurology 2010; 75: 1976–1981.

    Article  CAS  Google Scholar 

  47. Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW et al. Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci Transl Med 2011; 3: 89ra57.

    Article  CAS  Google Scholar 

  48. Wilson RS, Bienias JL, Berry-Kravis E, Evans DA, Bennett DA . The apolipoprotein E epsilon 2 allele and decline in episodic memory. J Neurol Neurosurg Psychiatry 2002; 73: 672–677.

    Article  CAS  Google Scholar 

  49. Helkala EL, Koivisto K, Hanninen T, Vanhanen M, Kervinen K, Kuusisto J et al. The association of apolipoprotein E polymorphism with memory: a population based study. Neurosci Lett 1995; 191: 141–144.

    Article  CAS  Google Scholar 

  50. Deary IJ, Whiteman MC, Pattie A, Starr JM, Hayward C, Wright AF et al. Apolipoprotein e gene variability and cognitive functions at age 79: a follow-up of the Scottish mental survey of 1932. Psychol Aging 2004; 19: 367–371.

    Article  Google Scholar 

  51. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 2010; 9: 119–128.

    Article  CAS  Google Scholar 

  52. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC et al. Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann Neurol 2009; 65: 403–413.

    Article  CAS  Google Scholar 

  53. Jones PB, Adams KW, Rozkalne A, Spires-Jones TL, Hshieh TT, Hashimoto T et al. Apolipoprotein E: isoform specific differences in tertiary structure and interaction with amyloid-beta in human Alzheimer brain. PLoS One 2011; 6: e14586.

    Article  CAS  Google Scholar 

  54. Palop JJ, Mucke L . Synaptic depression and aberrant excitatory network activity in Alzheimer's disease: two faces of the same coin? Neuromolecular Med 2010; 12: 48–55.

    Article  CAS  Google Scholar 

  55. Holtzman DM, Herz J, Bu G . Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2: a006312.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the Litwin Zucker Alzheimer’s Disease Center (CCG, TEG, JJG, TBB, SC, PD) and GCAPP, IRP, NIMH (TMH, JEK, MH). Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli Lilly, Medpace, Merck, Novartis AG, Pfizer, F. Hoffman-La Roche, Schering-Plough, Synarc, as well as non-profit partners like the Alzheimer’s Association and Alzheimer's Drug Discovery Foundation, with participation from the US Food and Drug Administration. Private sector contributions to ADNI are facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego, CA, USA. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles, CA, USA. This research was also supported by NIH grants P30 AG010129, K01 AG030514, and the Dana Foundation.The ADNI investigators contributed to the design of ADNI, diagnoses, and data collection of biomarkers, but not to the analyses and writing of this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T E Goldberg.

Ethics declarations

Competing interests

TG has consulted for Neurocog Trials. He receives royalties for use of a cognitive test battery in clinical trials, the BACS. PD has received research support from and served as a consultant to Applied Neurosolutions. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conejero-Goldberg, C., Gomar, J., Bobes-Bascaran, T. et al. APOE2 enhances neuroprotection against Alzheimer’s disease through multiple molecular mechanisms. Mol Psychiatry 19, 1243–1250 (2014). https://doi.org/10.1038/mp.2013.194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.194

Keywords

This article is cited by

Search

Quick links