Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Internalizing disorders and leukocyte telomere erosion: a prospective study of depression, generalized anxiety disorder and post-traumatic stress disorder

Abstract

There is evidence that persistent psychiatric disorders lead to age-related disease and premature mortality. Telomere length has emerged as a promising biomarker in studies that test the hypothesis that internalizing psychiatric disorders are associated with accumulating cellular damage. We tested the association between the persistence of internalizing disorders (depression, generalized anxiety disorder and post-traumatic stress disorder) and leukocyte telomere length (LTL) in the prospective longitudinal Dunedin Study (n=1037). Analyses showed that the persistence of internalizing disorders across repeated assessments from ages 11 to 38 years predicted shorter LTL at age 38 years in a dose–response manner, specifically in men (β=−0.137, 95% confidence interval (CI): −0.232, −0.042, P=0.005). This association was not accounted for by alternative explanatory factors, including childhood maltreatment, tobacco smoking, substance dependence, psychiatric medication use, poor physical health or low socioeconomic status. Additional analyses using DNA from blood collected at two time points (ages 26 and 38 years) showed that LTL erosion was accelerated among men who were diagnosed with internalizing disorder in the interim (β=−0.111, 95% CI: −0.184, −0.037, P=0.003). No significant associations were found among women in any analysis, highlighting potential sex differences in internalizing-related telomere biology. These findings point to a potential mechanism linking internalizing disorders to accelerated biological aging in the first half of the life course, particularly in men. Because internalizing disorders are treatable, the findings suggest the hypothesis that treating psychiatric disorders in the first half of the life course may reduce the population burden of age-related disease and extend health expectancy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Vaupel JW. Biodemography of human ageing. Nature 2010; 464: 536–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Finch CE, Crimmins EM. Inflammatory exposure and historical changes in human life-spans. Science 2004; 305: 1736–1739.

    Article  CAS  PubMed  Google Scholar 

  3. Kirkwood TBL, Austad SN. Why do we age? Nature 2000; 408: 233–238.

    Article  CAS  PubMed  Google Scholar 

  4. Danese A, McEwen BS. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol Behav 2012; 106: 29–39.

    Article  CAS  PubMed  Google Scholar 

  5. Wellcome Trust. Ageing: can we stop the clock? Wellcome Trust, 2006.

  6. Brayne C. The elephant in the room—healthy brains in later life, epidemiology and public health. Nat Rev Neurosci 2007; 8: 233–239.

    Article  CAS  PubMed  Google Scholar 

  7. Colton CW, Manderscheid RW. Congruencies in increased mortality rates, years of potential life lost, and causes of death among public mental health clients in eight states. Prev Chronic Dis 2006; 3: A42.

    PubMed  PubMed Central  Google Scholar 

  8. Druss BG, Zhao L, Von Esenwein S, Morrato EH, Marcus SC. Understanding excess mortality in persons with mental illness 17-year follow up of a nationally representative US Survey. Med Care 2011; 49: 599–604.

    Article  PubMed  Google Scholar 

  9. Cuijpers P, Smit F. Excess mortality in depression: a meta-analysis of community studies. J Affect Disord 2002; 72: 227–236.

    Article  PubMed  Google Scholar 

  10. Ahmadi N, Hajsadeghi F, Mirshkarlo HB, Budoff M, Yehuda R, Ebrahimi R. Post-traumatic stress disorder, coronary atherosclerosis, and mortality. Am J Cardiol 2011; 108: 29–33.

    Article  PubMed  Google Scholar 

  11. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62: 593–602.

    Article  PubMed  Google Scholar 

  12. Epel ES Telomeres in a life-span perspective: a new ‘psychobiomarker’? Curr Dir Psychol Sci 2009; 18: 6–10.

    Article  Google Scholar 

  13. Sahin E, Colla S, Liesa M, Moslehi J, Muller FL, Guo M et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011; 470: 359–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet 2012; 13: 693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cohen S, Janicki-Deverts D, Turner RB, Casselbrant ML, Li-Korotky HS, Epel ES et al. Association between telomere length and experimentally induced upper respiratory viral infection in healthy adults. JAMA 2013; 309: 699–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kiecolt-Glaser JK, Jaremka LM, Derry HM, Glaser R. Telomere length: a marker of disease susceptibility? Brain Behav Immun 2013; 34: 29–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Simon NM, Smoller JW, McNamara KL, Maser RS, Zalta AK, Pollack MH et al. Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry 2006; 60: 432–435.

    Article  CAS  PubMed  Google Scholar 

  18. Hartmann N, Boehner M, Groenen F, Kalb R Telomere length of patients with major depression is shortened but independent from therapy and severity of the disease. Depress Anxiety 2010; 27: 1111–1116.

    Article  CAS  PubMed  Google Scholar 

  19. Wolkowitz OM, Mellon SH, Epel ES, Lin J, Dhabhar FS, Su YL et al. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress - preliminary findings. PLoS ONE 2011; 6: e17837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O'Donovan A, Epel E, Lin J, Wolkowitz O, Cohen B, Maguen S et al. Childhood trauma associated with short leukocyte telomere length in posttraumatic stress disorder. Biol Psychiatry 2011; 70: 465–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ladwig K-H, Brockhaus AC, Baumert J, Lukaschek K, Emeny RT, Kruse J et al. Posttraumatic stress disorder and not depression is associated with shorter leukocyte telomere length: findings from 3000 participants in the population-based KORA F4 Study. PLoS ONE 2013; 8: e64762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Okereke OI, Prescott J, Wong JYY, Han JL, Rexrode KM, De Vivo I. High phobic anxiety is related to lower leukocyte telomere length in women. PLoS ONE 2012; 7: e40516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Phillips AC, Robertson T, Carroll D, Der G, Shiels PG, McGlynn L et al. Do symptoms of depression predict telomere length? evidence from the West of Scotland Twenty-07 Study. Psychosom Med 2013; 75: 288–296.

    Article  PubMed  Google Scholar 

  24. Hoen PW, de Jonge P, Na BY, Farzaneh-Far R, Epel E, Lin J et al. Depression and leukocyte telomere length in patients with coronary heart disease: data from the Heart and Soul Study. Psychosom Med 2011; 73: 541–547.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brady KT, Killeen TK, Brewerton T, Lucerini S. Comorbidity of psychiatric disorders and posttraumatic stress disorder. J Clin Psychiatry 2000; 61 ((Suppl 7)): 22–32.

    PubMed  Google Scholar 

  26. Sartor CE, Grant JD, Lynskey MT, McCutcheon VV, Waldron M, Statham DJ et al. Common heritable contributions to low-risk trauma, high-risk trauma, posttraumatic stress disorder, and major depression. Arch Gen Psychiatry 2012; 69: 293–299.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eaton NR, Keyes KM, Krueger RF, Balsis S, Skodol AE, Markon KE et al. An invariant dimensional liability model of gender differences in mental disorder prevalence: evidence from a national sample. J Abnorm Psychol 2012; 121: 282–288.

    Article  PubMed  Google Scholar 

  28. Olff M, Langeland W, Draijer N, Gersons BP. Gender differences in posttraumatic stress disorder. Psychol Bull 2007; 133: 183–204.

    Article  PubMed  Google Scholar 

  29. Barrett EL, Richardson DS. Sex differences in telomeres and lifespan. Aging Cell 2011; 10: 913–921.

    Article  CAS  PubMed  Google Scholar 

  30. Chang CK, Hayes RD, Broadbent M, Fernandes AC, Lee W, Hotopf M et al. All-cause mortality among people with serious mental illness (SMI), substance use disorders, and depressive disorders in southeast London: a cohort study. BMC Psychiatry 2010; 10; doi:10.1186/1471-244X-10-77.

  31. Caspi A, Moffitt TE, Thornton A, Freedman D, Amell JW, Harrington H et al. The life history calendar: a research and clinical assessment method for collecting retrospective event-history data. Int J Method Psych 1996; 6: 101–114.

    Article  Google Scholar 

  32. Costello A, Edelbrock C, Kalas R, Kessler M, Klaric S. NIMH Diagnostic Interview for Children: Child Version. National Institute of Mental Health: Rockville, MD, USA, 1982.

    Google Scholar 

  33. Robins L, Cottler L, Bucholz K, Compton W. Diagnostic Interview Schedule for DSM-IV (DIS-IV) 1995.

  34. Moffitt TE, Caspi A, Taylor A, Kokaua J, Milne BJ, Polanczyk G et al. How common are common mental disorders? evidence that lifetime prevalence rates are doubled by prospective versus retrospective ascertainment. Psychol Med 2010; 40: 899–909.

    Article  CAS  PubMed  Google Scholar 

  35. Bowtell DD. Rapid isolation of eukaryotic DNA. Anal Biochem 1987; 162: 463–465.

    Article  CAS  PubMed  Google Scholar 

  36. Jeanpierre M. A rapid method for the purification of DNA from blood. Nucleic Acids Res 1987; 15: 9611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res 2002; 30: e47.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shalev I, Moffitt TE, Sugden K, Williams B, Houts RM, Danese A et al. Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: a longitudinal study. Mol Psychiatry 2013; 18: 576–581.

    Article  CAS  PubMed  Google Scholar 

  39. Selvin S. Statistical Analysis of Epidemiologic Data. Oxford University Press: New York, NY, USA, 2004.

    Book  Google Scholar 

  40. Steenstrup T, Hjelmborg JV, Kark JD, Christensen K, Aviv A. The telomere lengthening conundrum—artifact or biology? Nucleic Acids Res 2013; 41: e131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Verhulst S, Aviv A, Benetos A, Berenson GS, Kark JD. Do leukocyte telomere length dynamics depend on baseline telomere length? an analysis that corrects for 'regression to the mean'. Eur J Epidemiol 2013; 28: 859–866.

    Article  PubMed  Google Scholar 

  42. Epel E. How ‘reversible’ is telomeric aging? Cancer Prev Res 2012; 5: 1163–1168.

    Article  Google Scholar 

  43. Kudielka BM, Kirschbaum C. Sex differences in HPA axis responses to stress: a review. Biol Psychol 2005; 69: 113–132.

    Article  PubMed  Google Scholar 

  44. Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 2009; 71: 171–186.

    Article  CAS  PubMed  Google Scholar 

  45. Ide T, Tsutsui H, Ohashi N, Hayashidani S, Suematsu N, Tsuchihashi M et al. Greater oxidative stress in healthy young men compared with premenopausal women. Arterioscler Thromb Vasc Biol 2002; 22: 438–442.

    Article  CAS  PubMed  Google Scholar 

  46. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci 2002; 27: 339–344.

    Article  CAS  PubMed  Google Scholar 

  47. O'Donovan A, Pantell MS, Puterman E, Dhabhar FS, Blackburn EH, Yaffe K et al. Cumulative inflammatory load is associated with short leukocyte telomere length in the Health, Aging and Body Composition Study. PLoS ONE 2011; 6: e19687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choi J, Fauce SR, Effros RB. Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav Immun 2008; 22: 600–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vina J, Sastre J, Pallardo' F, Borras C. Mitochondrial theory of aging: importance to explain why females live longer than males. Antioxid Redox Sign 2003; 5: 549–556.

    Article  CAS  Google Scholar 

  50. Borras C, Sastre J, Garcia-Sala D, Lloret A, Pallardo FV, Vina J. Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radical Bio Med 2003; 34: 546–552.

    Article  CAS  Google Scholar 

  51. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153: 1194–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Misiti S, Nanni S, Fontemaggi G, Cong YS, Wen JP, Hirte HW et al. Induction of hTERT expression and telomerase activity by estrogens in human ovary epithelium cells. Mol Cell Biol 2000; 20: 3764–3771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bayne S, Jones MEE, Ll H, Liu JP. Potential roles for estrogen regulation of telomerase activity in aging. Ann N Y Acad Sci 2007; 1114: 48–55.

    Article  CAS  PubMed  Google Scholar 

  54. Shalev I, Entringer S, Wadhwa PD, Wolkowitz OM, Puterman E, Lin J et al. Stress and telomere biology: a lifespan perspective. Psychoneuroendocrinology 2013; 38: 1835–1842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Glass D, Parts L, Knowles D, Aviv A, Spector TD. No correlation between childhood maltreatment and telomere length. Biol Psychiatry 2010; 68: e21.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Price LH, Kao HT, Burgers DE, Carpenter LL, Tyrka AR. Telomeres and early-life stress: an overview. Biol Psychiatry 2013; 73: 15–23.

    Article  CAS  PubMed  Google Scholar 

  57. Shalev I. Early life stress and telomere length: investigating the connection and possible mechanisms. BioEssays 2012; 34: 943–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mather KA, Jorm AF, Parslow RA, Christensen H. Is telomere length a biomarker of aging? A review. J Gerontol A Biol Sci Med Sci 2011; 66: 202–213.

    Article  PubMed  Google Scholar 

  59. de Jesus BB, Vera E, Schneeberger K, Tejera AM, Ayuso E, Bosch F et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med 2012; 4: 691–704.

    Article  Google Scholar 

  60. Damjanovic AK, Yang YH, Glaser R, Kiecolt-Glaser JK, Nguyen H, Laskowski B et al. Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer's disease patients. J Immunol 2007; 179: 4249–4254.

    Article  CAS  PubMed  Google Scholar 

  61. Carrero J, Stenvinkel P, Fellström B, Qureshi A, Lamb K, Heimbürger O et al. Telomere attrition is associated with inflammation, low fetuin‐A levels and high mortality in prevalent haemodialysis patients. J Intern Med 2008; 263: 302–312.

    Article  CAS  PubMed  Google Scholar 

  62. Bekaert S, De Meyer T, Rietzschel ER, De Buyzere ML, De Bacquer D, Langlois M et al. Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell 2007; 6: 639–647.

    Article  CAS  PubMed  Google Scholar 

  63. Solorio S, Murillo-Ortiz B, Hernandez-Gonzalez M, Guillen-Contreras J, Arenas-Aranda D, Solorzano-Zepeda FJ et al. Association between telomere length and C-reactive protein and the development of coronary collateral circulation in patients with coronary artery disease. Angiology 2011; 62: 467–472.

    Article  PubMed  Google Scholar 

  64. Masi S, Nightingale CM, Day IN, Guthrie P, Rumley A, Lowe GD et al. Inflammation and not cardiovascular risk factors is associated with short leukocyte telomere length in 13-to 16-year-old adolescents. Arterioscler Thromb Vasc Biol 2012; 32: 2029–2034.

    Article  CAS  PubMed  Google Scholar 

  65. Sampson MJ, Winterbone MS, Hughes JC, Dozio N, Hughes DA. Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care 2006; 29: 283–289.

    Article  CAS  PubMed  Google Scholar 

  66. Farzaneh-Far R, Lin J, Epel E, Lapham K, Blackburn E, Whooley MA. Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the heart and soul study. PLoS ONE 2010; 5 ((1)): e8612.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Harris SE, Martin-Ruiz C, von Zglinicki T, Starr JM, Deary IJ. Telomere length and aging biomarkers in 70-year-olds: the Lothian Birth Cohort 1936. Neurobiol Aging 2012; 331486 e 1483–1488.

    Article  Google Scholar 

  68. Sanders JL, Fitzpatrick AL, Boudreau RM, Arnold AM, Aviv A, Kimura M et al. Leukocyte telomere length is associated with noninvasively measured age-related disease: the Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci 2012; 67: 409–416.

    Article  PubMed  Google Scholar 

  69. Biegler KA, Anderson A, Wenzel LB, Osann K, Nelson EL. Longitudinal changes in telomere length and chronic stress response: implications for cancer prevention from a randomized biobehavioral clinical study. Cancer Prev Res 2012; 5: 1173–1182.

    Article  Google Scholar 

  70. Ornish D, Lin J, Chan JM, Epel E, Kemp C, Weidner G et al. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol 2013; 14: 1112–1120.

    Article  CAS  PubMed  Google Scholar 

  71. Daubenmier J, Lin J, Blackburn E, Hecht FM, Kristeller J, Maninger N et al. Changes in stress, eating, and metabolic factors are related to changes in telomerase activity in a randomized mindfulness intervention pilot study. Psychoneuroendocrinology 2012; 37: 917–928.

    Article  CAS  PubMed  Google Scholar 

  72. Moffitt TE and the Klaus-Grawe 2012 Think Tank. Childhood exposure to violence and lifelong health: clinical intervention science and stress biology research join forces. Dev Psychopathol (25th Anniversary Special issue) 2013; 25: 1619–1634.

    Article  Google Scholar 

  73. Kessler RC, McLaughlin KA, Green JG, Gruber MJ, Sampson NA, Zaslavsky AM et al. Childhood adversities and adult psychopathology in the WHO World Mental Health Surveys. Br J Psychiatry 2010; 197: 378–385.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW et al. Role of genotype in the cycle of violence in maltreated children. Science 2002; 297: 851–854.

    Article  CAS  PubMed  Google Scholar 

  75. Breslau N, Novak SP, Kessler RC. Psychiatric disorders and stages of smoking. Biol Psychiatry 2004; 55: 69–76.

    Article  PubMed  Google Scholar 

  76. McGrath M, Wong JYY, Michaud D, Hunter DJ, De Vivo I. Telomere length, cigarette smoking, and bladder cancer risk in men and women. Cancer Epidem Bio 2007; 16: 815–819.

    Article  CAS  Google Scholar 

  77. Kessler RC, Walters EE, Aguilar-Gaxiola S, Andrade L, Borges LG, Caraveo-Anduaga JJ et al. Cross-national Comparisons of Co-morbidities Between Substance Use Disorders and Mental Disorders. Handbook of Drug Abuse Prevention: Springer Science+Business Media LLC: New York, NY, USA, 2006, pp 447–472.

    Google Scholar 

  78. Pavanello S, Hoxha M, Dioni L, Bertazzi PA, Snenghi R, Nalesso A et al. Shortened telomeres in individuals with abuse in alcohol consumption. Int J Cancer 2011; 129: 983–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang ZY, Ye JY, Li CD, Zhou DZ, Shen Q, Wu J et al. Drug addiction is associated with leukocyte telomere length. Sci Rep 2013; 3: 1542.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mackin P. Cardiac side effects of psychiatric drugs. Hum Psychopharmacol 2008; 23 ((Suppl 1)): 3–14.

    Article  CAS  PubMed  Google Scholar 

  81. Scott KM, Bruffaerts R, Tsang A, Ormel J, Alonso J, Angermeyer MC et al. Depression-anxiety relationships with chronic physical conditions: results from the World Mental Health Surveys. J Affect Disord 2007; 103: 113–120.

    Article  CAS  PubMed  Google Scholar 

  82. Lorant V, Deliege D, Eaton W, Robert A, Philippot P, Ansseau M. Socioeconomic inequalities in depression: a meta-analysis. Am J Epidemiol 2003; 157: 98–112.

    Article  CAS  PubMed  Google Scholar 

  83. Robertson T, Batty GD, Der G, Fenton C, Shiels PG, Benzeval M. Is socioeconomic status associated with biological aging as measured by telomere length? Epidemiol Rev 2013; 35: 98–111.

    Article  PubMed  Google Scholar 

  84. Milne B, Byun U, Lee A. New Zealand Socio-economic Index 2006. Wellington: Statistics New Zealand, Wellington, New Zealand, 2013.

    Google Scholar 

Download references

Acknowledgements

We thank the Dunedin Study members, Unit research staff, Bob Hancox, Murray Thomson and Study founder Phil Silva. This research received support from the US National Institute on Aging (AG032282) and the UK Medical Research Council (MR/K00381X). The Dunedin Multidisciplinary Health and Development Research Unit is supported by the New Zealand Health Research Council. Additional support was provided by the Klaus-Grawe Foundation and the Jacobs Foundation. The study protocol was approved by the institutional ethical review boards of the participating universities. Study members gave informed consent before participating.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T E Moffitt.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shalev, I., Moffitt, T., Braithwaite, A. et al. Internalizing disorders and leukocyte telomere erosion: a prospective study of depression, generalized anxiety disorder and post-traumatic stress disorder. Mol Psychiatry 19, 1163–1170 (2014). https://doi.org/10.1038/mp.2013.183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.183

Keywords

This article is cited by

Search

Quick links